/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 143 ms] (4) CpxRelTRS (5) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTypedWeightedCompleteTrs (13) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (14) CpxRNTS (15) InliningProof [UPPER BOUND(ID), 439 ms] (16) CpxRNTS (17) SimplificationProof [BOTH BOUNDS(ID, ID), 3 ms] (18) CpxRNTS (19) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CpxRNTS (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 29 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 5 ms] (26) CpxRNTS (27) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 158 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 62 ms] (32) CpxRNTS (33) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 106 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 33 ms] (38) CpxRNTS (39) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 148 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 54 ms] (44) CpxRNTS (45) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (46) CpxRNTS (47) IntTrsBoundProof [UPPER BOUND(ID), 118 ms] (48) CpxRNTS (49) IntTrsBoundProof [UPPER BOUND(ID), 31 ms] (50) CpxRNTS (51) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (52) CpxRNTS (53) IntTrsBoundProof [UPPER BOUND(ID), 106 ms] (54) CpxRNTS (55) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (56) CpxRNTS (57) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (58) CpxRNTS (59) IntTrsBoundProof [UPPER BOUND(ID), 610 ms] (60) CpxRNTS (61) IntTrsBoundProof [UPPER BOUND(ID), 280 ms] (62) CpxRNTS (63) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (64) CpxRNTS (65) IntTrsBoundProof [UPPER BOUND(ID), 427 ms] (66) CpxRNTS (67) IntTrsBoundProof [UPPER BOUND(ID), 97 ms] (68) CpxRNTS (69) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (70) CpxRNTS (71) IntTrsBoundProof [UPPER BOUND(ID), 169 ms] (72) CpxRNTS (73) IntTrsBoundProof [UPPER BOUND(ID), 65 ms] (74) CpxRNTS (75) FinalProof [FINISHED, 0 ms] (76) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(X, X) -> f(a, n__b) b -> a b -> n__b activate(n__b) -> b activate(X) -> X S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(a) -> a encArg(n__b) -> n__b encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_b) -> b encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_n__b -> n__b encode_b -> b encode_activate(x_1) -> activate(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(X, X) -> f(a, n__b) b -> a b -> n__b activate(n__b) -> b activate(X) -> X The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(n__b) -> n__b encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_b) -> b encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_n__b -> n__b encode_b -> b encode_activate(x_1) -> activate(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(X, X) -> f(a, n__b) b -> a b -> n__b activate(n__b) -> b activate(X) -> X The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(n__b) -> n__b encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_b) -> b encArg(cons_activate(x_1)) -> activate(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_n__b -> n__b encode_b -> b encode_activate(x_1) -> activate(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(X, X) -> f(a, n__b) [1] b -> a [1] b -> n__b [1] activate(n__b) -> b [1] activate(X) -> X [1] encArg(a) -> a [0] encArg(n__b) -> n__b [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encArg(cons_b) -> b [0] encArg(cons_activate(x_1)) -> activate(encArg(x_1)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_a -> a [0] encode_n__b -> n__b [0] encode_b -> b [0] encode_activate(x_1) -> activate(encArg(x_1)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(X, X) -> f(a, n__b) [1] b -> a [1] b -> n__b [1] activate(n__b) -> b [1] activate(X) -> X [1] encArg(a) -> a [0] encArg(n__b) -> n__b [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encArg(cons_b) -> b [0] encArg(cons_activate(x_1)) -> activate(encArg(x_1)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_a -> a [0] encode_n__b -> n__b [0] encode_b -> b [0] encode_activate(x_1) -> activate(encArg(x_1)) [0] The TRS has the following type information: f :: a:n__b:cons_f:cons_b:cons_activate -> a:n__b:cons_f:cons_b:cons_activate -> a:n__b:cons_f:cons_b:cons_activate a :: a:n__b:cons_f:cons_b:cons_activate n__b :: a:n__b:cons_f:cons_b:cons_activate b :: a:n__b:cons_f:cons_b:cons_activate activate :: a:n__b:cons_f:cons_b:cons_activate -> a:n__b:cons_f:cons_b:cons_activate encArg :: a:n__b:cons_f:cons_b:cons_activate -> a:n__b:cons_f:cons_b:cons_activate cons_f :: a:n__b:cons_f:cons_b:cons_activate -> a:n__b:cons_f:cons_b:cons_activate -> a:n__b:cons_f:cons_b:cons_activate cons_b :: a:n__b:cons_f:cons_b:cons_activate cons_activate :: a:n__b:cons_f:cons_b:cons_activate -> a:n__b:cons_f:cons_b:cons_activate encode_f :: a:n__b:cons_f:cons_b:cons_activate -> a:n__b:cons_f:cons_b:cons_activate -> a:n__b:cons_f:cons_b:cons_activate encode_a :: a:n__b:cons_f:cons_b:cons_activate encode_n__b :: a:n__b:cons_f:cons_b:cons_activate encode_b :: a:n__b:cons_f:cons_b:cons_activate encode_activate :: a:n__b:cons_f:cons_b:cons_activate -> a:n__b:cons_f:cons_b:cons_activate Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: b f_2 activate_1 encArg_1 encode_f_2 encode_a encode_n__b encode_b encode_activate_1 Due to the following rules being added: encArg(v0) -> null_encArg [0] encode_f(v0, v1) -> null_encode_f [0] encode_a -> null_encode_a [0] encode_n__b -> null_encode_n__b [0] encode_b -> null_encode_b [0] encode_activate(v0) -> null_encode_activate [0] f(v0, v1) -> null_f [0] And the following fresh constants: null_encArg, null_encode_f, null_encode_a, null_encode_n__b, null_encode_b, null_encode_activate, null_f ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(X, X) -> f(a, n__b) [1] b -> a [1] b -> n__b [1] activate(n__b) -> b [1] activate(X) -> X [1] encArg(a) -> a [0] encArg(n__b) -> n__b [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encArg(cons_b) -> b [0] encArg(cons_activate(x_1)) -> activate(encArg(x_1)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_a -> a [0] encode_n__b -> n__b [0] encode_b -> b [0] encode_activate(x_1) -> activate(encArg(x_1)) [0] encArg(v0) -> null_encArg [0] encode_f(v0, v1) -> null_encode_f [0] encode_a -> null_encode_a [0] encode_n__b -> null_encode_n__b [0] encode_b -> null_encode_b [0] encode_activate(v0) -> null_encode_activate [0] f(v0, v1) -> null_f [0] The TRS has the following type information: f :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f -> a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f -> a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f a :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f n__b :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f b :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f activate :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f -> a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f encArg :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f -> a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f cons_f :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f -> a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f -> a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f cons_b :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f cons_activate :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f -> a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f encode_f :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f -> a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f -> a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f encode_a :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f encode_n__b :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f encode_b :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f encode_activate :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f -> a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f null_encArg :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f null_encode_f :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f null_encode_a :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f null_encode_n__b :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f null_encode_b :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f null_encode_activate :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f null_f :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f Rewrite Strategy: INNERMOST ---------------------------------------- (11) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(X, X) -> f(a, n__b) [1] b -> a [1] b -> n__b [1] activate(n__b) -> b [1] activate(X) -> X [1] encArg(a) -> a [0] encArg(n__b) -> n__b [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encArg(cons_b) -> b [0] encArg(cons_activate(a)) -> activate(a) [0] encArg(cons_activate(n__b)) -> activate(n__b) [0] encArg(cons_activate(cons_f(x_113, x_26))) -> activate(f(encArg(x_113), encArg(x_26))) [0] encArg(cons_activate(cons_b)) -> activate(b) [0] encArg(cons_activate(cons_activate(x_114))) -> activate(activate(encArg(x_114))) [0] encArg(cons_activate(x_1)) -> activate(null_encArg) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_a -> a [0] encode_n__b -> n__b [0] encode_b -> b [0] encode_activate(a) -> activate(a) [0] encode_activate(n__b) -> activate(n__b) [0] encode_activate(cons_f(x_129, x_214)) -> activate(f(encArg(x_129), encArg(x_214))) [0] encode_activate(cons_b) -> activate(b) [0] encode_activate(cons_activate(x_130)) -> activate(activate(encArg(x_130))) [0] encode_activate(x_1) -> activate(null_encArg) [0] encArg(v0) -> null_encArg [0] encode_f(v0, v1) -> null_encode_f [0] encode_a -> null_encode_a [0] encode_n__b -> null_encode_n__b [0] encode_b -> null_encode_b [0] encode_activate(v0) -> null_encode_activate [0] f(v0, v1) -> null_f [0] The TRS has the following type information: f :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f -> a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f -> a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f a :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f n__b :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f b :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f activate :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f -> a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f encArg :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f -> a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f cons_f :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f -> a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f -> a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f cons_b :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f cons_activate :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f -> a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f encode_f :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f -> a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f -> a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f encode_a :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f encode_n__b :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f encode_b :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f encode_activate :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f -> a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f null_encArg :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f null_encode_f :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f null_encode_a :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f null_encode_n__b :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f null_encode_b :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f null_encode_activate :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f null_f :: a:n__b:cons_f:cons_b:cons_activate:null_encArg:null_encode_f:null_encode_a:null_encode_n__b:null_encode_b:null_encode_activate:null_f Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: a => 0 n__b => 2 cons_b => 1 null_encArg => 0 null_encode_f => 0 null_encode_a => 0 null_encode_n__b => 0 null_encode_b => 0 null_encode_activate => 0 null_f => 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> X :|: X >= 0, z = X activate(z) -{ 1 }-> b :|: z = 2 b -{ 1 }-> 2 :|: b -{ 1 }-> 0 :|: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> b :|: z = 1 encArg(z) -{ 0 }-> activate(f(encArg(x_113), encArg(x_26))) :|: x_113 >= 0, z = 1 + (1 + x_113 + x_26), x_26 >= 0 encArg(z) -{ 0 }-> activate(b) :|: z = 1 + 1 encArg(z) -{ 0 }-> activate(activate(encArg(x_114))) :|: z = 1 + (1 + x_114), x_114 >= 0 encArg(z) -{ 0 }-> activate(2) :|: z = 1 + 2 encArg(z) -{ 0 }-> activate(0) :|: z = 1 + 0 encArg(z) -{ 0 }-> activate(0) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_a -{ 0 }-> 0 :|: encode_activate(z) -{ 0 }-> activate(f(encArg(x_129), encArg(x_214))) :|: z = 1 + x_129 + x_214, x_214 >= 0, x_129 >= 0 encode_activate(z) -{ 0 }-> activate(b) :|: z = 1 encode_activate(z) -{ 0 }-> activate(activate(encArg(x_130))) :|: x_130 >= 0, z = 1 + x_130 encode_activate(z) -{ 0 }-> activate(2) :|: z = 2 encode_activate(z) -{ 0 }-> activate(0) :|: z = 0 encode_activate(z) -{ 0 }-> activate(0) :|: x_1 >= 0, z = x_1 encode_activate(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_b -{ 0 }-> b :|: encode_b -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_n__b -{ 0 }-> 2 :|: encode_n__b -{ 0 }-> 0 :|: f(z, z') -{ 1 }-> f(0, 2) :|: z' = X, X >= 0, z = X f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 ---------------------------------------- (15) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: b -{ 1 }-> 2 :|: b -{ 1 }-> 0 :|: activate(z) -{ 1 }-> b :|: z = 2 activate(z) -{ 1 }-> X :|: X >= 0, z = X ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> X :|: X >= 0, z = X activate(z) -{ 2 }-> 2 :|: z = 2 activate(z) -{ 2 }-> 0 :|: z = 2 b -{ 1 }-> 2 :|: b -{ 1 }-> 0 :|: encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z = 1 + 2, X >= 0, 2 = X encArg(z) -{ 1 }-> X :|: z = 1 + x_1, x_1 >= 0, X >= 0, 0 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 2 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 0 = X encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 }-> b :|: z = 1 + 2, 2 = 2 encArg(z) -{ 2 }-> b :|: z = 1 + 1, 2 = 2 encArg(z) -{ 0 }-> activate(f(encArg(x_113), encArg(x_26))) :|: x_113 >= 0, z = 1 + (1 + x_113 + x_26), x_26 >= 0 encArg(z) -{ 0 }-> activate(activate(encArg(x_114))) :|: z = 1 + (1 + x_114), x_114 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 1 }-> 0 :|: z = 1 encode_a -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z = 2, X >= 0, 2 = X encode_activate(z) -{ 1 }-> X :|: x_1 >= 0, z = x_1, X >= 0, 0 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 2 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 0 = X encode_activate(z) -{ 1 }-> b :|: z = 2, 2 = 2 encode_activate(z) -{ 2 }-> b :|: z = 1, 2 = 2 encode_activate(z) -{ 0 }-> activate(f(encArg(x_129), encArg(x_214))) :|: z = 1 + x_129 + x_214, x_214 >= 0, x_129 >= 0 encode_activate(z) -{ 0 }-> activate(activate(encArg(x_130))) :|: x_130 >= 0, z = 1 + x_130 encode_activate(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_b -{ 1 }-> 2 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_n__b -{ 0 }-> 2 :|: encode_n__b -{ 0 }-> 0 :|: f(z, z') -{ 1 }-> f(0, 2) :|: z' = X, X >= 0, z = X f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 ---------------------------------------- (17) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 2 :|: z = 2 activate(z) -{ 2 }-> 0 :|: z = 2 b -{ 1 }-> 2 :|: b -{ 1 }-> 0 :|: encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z = 1 + 2, X >= 0, 2 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 2 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 0 = X encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 }-> b :|: z = 1 + 2, 2 = 2 encArg(z) -{ 2 }-> b :|: z = 1 + 1, 2 = 2 encArg(z) -{ 0 }-> activate(f(encArg(x_113), encArg(x_26))) :|: x_113 >= 0, z = 1 + (1 + x_113 + x_26), x_26 >= 0 encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 1 encode_a -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z = 2, X >= 0, 2 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 2 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 0 = X encode_activate(z) -{ 1 }-> b :|: z = 2, 2 = 2 encode_activate(z) -{ 2 }-> b :|: z = 1, 2 = 2 encode_activate(z) -{ 0 }-> activate(f(encArg(x_129), encArg(x_214))) :|: z = 1 + x_129 + x_214, x_214 >= 0, x_129 >= 0 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_b -{ 1 }-> 2 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_n__b -{ 0 }-> 2 :|: encode_n__b -{ 0 }-> 0 :|: f(z, z') -{ 1 }-> f(0, 2) :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 ---------------------------------------- (19) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { encode_a } { f } { b } { activate } { encode_b } { encode_n__b } { encArg } { encode_activate } { encode_f } ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 2 :|: z = 2 activate(z) -{ 2 }-> 0 :|: z = 2 b -{ 1 }-> 2 :|: b -{ 1 }-> 0 :|: encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z = 1 + 2, X >= 0, 2 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 2 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 0 = X encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 }-> b :|: z = 1 + 2, 2 = 2 encArg(z) -{ 2 }-> b :|: z = 1 + 1, 2 = 2 encArg(z) -{ 0 }-> activate(f(encArg(x_113), encArg(x_26))) :|: x_113 >= 0, z = 1 + (1 + x_113 + x_26), x_26 >= 0 encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 1 encode_a -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z = 2, X >= 0, 2 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 2 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 0 = X encode_activate(z) -{ 1 }-> b :|: z = 2, 2 = 2 encode_activate(z) -{ 2 }-> b :|: z = 1, 2 = 2 encode_activate(z) -{ 0 }-> activate(f(encArg(x_129), encArg(x_214))) :|: z = 1 + x_129 + x_214, x_214 >= 0, x_129 >= 0 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_b -{ 1 }-> 2 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_n__b -{ 0 }-> 2 :|: encode_n__b -{ 0 }-> 0 :|: f(z, z') -{ 1 }-> f(0, 2) :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_a}, {f}, {b}, {activate}, {encode_b}, {encode_n__b}, {encArg}, {encode_activate}, {encode_f} ---------------------------------------- (21) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 2 :|: z = 2 activate(z) -{ 2 }-> 0 :|: z = 2 b -{ 1 }-> 2 :|: b -{ 1 }-> 0 :|: encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z = 1 + 2, X >= 0, 2 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 2 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 0 = X encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 }-> b :|: z = 1 + 2, 2 = 2 encArg(z) -{ 2 }-> b :|: z = 1 + 1, 2 = 2 encArg(z) -{ 0 }-> activate(f(encArg(x_113), encArg(x_26))) :|: x_113 >= 0, z = 1 + (1 + x_113 + x_26), x_26 >= 0 encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 1 encode_a -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z = 2, X >= 0, 2 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 2 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 0 = X encode_activate(z) -{ 1 }-> b :|: z = 2, 2 = 2 encode_activate(z) -{ 2 }-> b :|: z = 1, 2 = 2 encode_activate(z) -{ 0 }-> activate(f(encArg(x_129), encArg(x_214))) :|: z = 1 + x_129 + x_214, x_214 >= 0, x_129 >= 0 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_b -{ 1 }-> 2 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_n__b -{ 0 }-> 2 :|: encode_n__b -{ 0 }-> 0 :|: f(z, z') -{ 1 }-> f(0, 2) :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_a}, {f}, {b}, {activate}, {encode_b}, {encode_n__b}, {encArg}, {encode_activate}, {encode_f} ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_a after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 2 :|: z = 2 activate(z) -{ 2 }-> 0 :|: z = 2 b -{ 1 }-> 2 :|: b -{ 1 }-> 0 :|: encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z = 1 + 2, X >= 0, 2 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 2 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 0 = X encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 }-> b :|: z = 1 + 2, 2 = 2 encArg(z) -{ 2 }-> b :|: z = 1 + 1, 2 = 2 encArg(z) -{ 0 }-> activate(f(encArg(x_113), encArg(x_26))) :|: x_113 >= 0, z = 1 + (1 + x_113 + x_26), x_26 >= 0 encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 1 encode_a -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z = 2, X >= 0, 2 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 2 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 0 = X encode_activate(z) -{ 1 }-> b :|: z = 2, 2 = 2 encode_activate(z) -{ 2 }-> b :|: z = 1, 2 = 2 encode_activate(z) -{ 0 }-> activate(f(encArg(x_129), encArg(x_214))) :|: z = 1 + x_129 + x_214, x_214 >= 0, x_129 >= 0 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_b -{ 1 }-> 2 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_n__b -{ 0 }-> 2 :|: encode_n__b -{ 0 }-> 0 :|: f(z, z') -{ 1 }-> f(0, 2) :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_a}, {f}, {b}, {activate}, {encode_b}, {encode_n__b}, {encArg}, {encode_activate}, {encode_f} Previous analysis results are: encode_a: runtime: ?, size: O(1) [0] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_a after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 2 :|: z = 2 activate(z) -{ 2 }-> 0 :|: z = 2 b -{ 1 }-> 2 :|: b -{ 1 }-> 0 :|: encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z = 1 + 2, X >= 0, 2 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 2 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 0 = X encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 }-> b :|: z = 1 + 2, 2 = 2 encArg(z) -{ 2 }-> b :|: z = 1 + 1, 2 = 2 encArg(z) -{ 0 }-> activate(f(encArg(x_113), encArg(x_26))) :|: x_113 >= 0, z = 1 + (1 + x_113 + x_26), x_26 >= 0 encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 1 encode_a -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z = 2, X >= 0, 2 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 2 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 0 = X encode_activate(z) -{ 1 }-> b :|: z = 2, 2 = 2 encode_activate(z) -{ 2 }-> b :|: z = 1, 2 = 2 encode_activate(z) -{ 0 }-> activate(f(encArg(x_129), encArg(x_214))) :|: z = 1 + x_129 + x_214, x_214 >= 0, x_129 >= 0 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_b -{ 1 }-> 2 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_n__b -{ 0 }-> 2 :|: encode_n__b -{ 0 }-> 0 :|: f(z, z') -{ 1 }-> f(0, 2) :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {f}, {b}, {activate}, {encode_b}, {encode_n__b}, {encArg}, {encode_activate}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (27) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 2 :|: z = 2 activate(z) -{ 2 }-> 0 :|: z = 2 b -{ 1 }-> 2 :|: b -{ 1 }-> 0 :|: encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z = 1 + 2, X >= 0, 2 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 2 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 0 = X encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 }-> b :|: z = 1 + 2, 2 = 2 encArg(z) -{ 2 }-> b :|: z = 1 + 1, 2 = 2 encArg(z) -{ 0 }-> activate(f(encArg(x_113), encArg(x_26))) :|: x_113 >= 0, z = 1 + (1 + x_113 + x_26), x_26 >= 0 encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 1 encode_a -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z = 2, X >= 0, 2 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 2 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 0 = X encode_activate(z) -{ 1 }-> b :|: z = 2, 2 = 2 encode_activate(z) -{ 2 }-> b :|: z = 1, 2 = 2 encode_activate(z) -{ 0 }-> activate(f(encArg(x_129), encArg(x_214))) :|: z = 1 + x_129 + x_214, x_214 >= 0, x_129 >= 0 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_b -{ 1 }-> 2 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_n__b -{ 0 }-> 2 :|: encode_n__b -{ 0 }-> 0 :|: f(z, z') -{ 1 }-> f(0, 2) :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {f}, {b}, {activate}, {encode_b}, {encode_n__b}, {encArg}, {encode_activate}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 2 :|: z = 2 activate(z) -{ 2 }-> 0 :|: z = 2 b -{ 1 }-> 2 :|: b -{ 1 }-> 0 :|: encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z = 1 + 2, X >= 0, 2 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 2 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 0 = X encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 }-> b :|: z = 1 + 2, 2 = 2 encArg(z) -{ 2 }-> b :|: z = 1 + 1, 2 = 2 encArg(z) -{ 0 }-> activate(f(encArg(x_113), encArg(x_26))) :|: x_113 >= 0, z = 1 + (1 + x_113 + x_26), x_26 >= 0 encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 1 encode_a -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z = 2, X >= 0, 2 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 2 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 0 = X encode_activate(z) -{ 1 }-> b :|: z = 2, 2 = 2 encode_activate(z) -{ 2 }-> b :|: z = 1, 2 = 2 encode_activate(z) -{ 0 }-> activate(f(encArg(x_129), encArg(x_214))) :|: z = 1 + x_129 + x_214, x_214 >= 0, x_129 >= 0 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_b -{ 1 }-> 2 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_n__b -{ 0 }-> 2 :|: encode_n__b -{ 0 }-> 0 :|: f(z, z') -{ 1 }-> f(0, 2) :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {f}, {b}, {activate}, {encode_b}, {encode_n__b}, {encArg}, {encode_activate}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: ?, size: O(1) [0] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 2 :|: z = 2 activate(z) -{ 2 }-> 0 :|: z = 2 b -{ 1 }-> 2 :|: b -{ 1 }-> 0 :|: encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z = 1 + 2, X >= 0, 2 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 2 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 0 = X encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 }-> b :|: z = 1 + 2, 2 = 2 encArg(z) -{ 2 }-> b :|: z = 1 + 1, 2 = 2 encArg(z) -{ 0 }-> activate(f(encArg(x_113), encArg(x_26))) :|: x_113 >= 0, z = 1 + (1 + x_113 + x_26), x_26 >= 0 encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 1 encode_a -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z = 2, X >= 0, 2 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 2 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 0 = X encode_activate(z) -{ 1 }-> b :|: z = 2, 2 = 2 encode_activate(z) -{ 2 }-> b :|: z = 1, 2 = 2 encode_activate(z) -{ 0 }-> activate(f(encArg(x_129), encArg(x_214))) :|: z = 1 + x_129 + x_214, x_214 >= 0, x_129 >= 0 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_b -{ 1 }-> 2 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_n__b -{ 0 }-> 2 :|: encode_n__b -{ 0 }-> 0 :|: f(z, z') -{ 1 }-> f(0, 2) :|: z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {b}, {activate}, {encode_b}, {encode_n__b}, {encArg}, {encode_activate}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] ---------------------------------------- (33) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 2 :|: z = 2 activate(z) -{ 2 }-> 0 :|: z = 2 b -{ 1 }-> 2 :|: b -{ 1 }-> 0 :|: encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z = 1 + 2, X >= 0, 2 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 2 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 0 = X encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 }-> b :|: z = 1 + 2, 2 = 2 encArg(z) -{ 2 }-> b :|: z = 1 + 1, 2 = 2 encArg(z) -{ 0 }-> activate(f(encArg(x_113), encArg(x_26))) :|: x_113 >= 0, z = 1 + (1 + x_113 + x_26), x_26 >= 0 encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 1 encode_a -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z = 2, X >= 0, 2 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 2 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 0 = X encode_activate(z) -{ 1 }-> b :|: z = 2, 2 = 2 encode_activate(z) -{ 2 }-> b :|: z = 1, 2 = 2 encode_activate(z) -{ 0 }-> activate(f(encArg(x_129), encArg(x_214))) :|: z = 1 + x_129 + x_214, x_214 >= 0, x_129 >= 0 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_b -{ 1 }-> 2 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_n__b -{ 0 }-> 2 :|: encode_n__b -{ 0 }-> 0 :|: f(z, z') -{ 2 }-> s :|: s >= 0, s <= 0, z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {b}, {activate}, {encode_b}, {encode_n__b}, {encArg}, {encode_activate}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: b after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 2 :|: z = 2 activate(z) -{ 2 }-> 0 :|: z = 2 b -{ 1 }-> 2 :|: b -{ 1 }-> 0 :|: encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z = 1 + 2, X >= 0, 2 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 2 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 0 = X encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 }-> b :|: z = 1 + 2, 2 = 2 encArg(z) -{ 2 }-> b :|: z = 1 + 1, 2 = 2 encArg(z) -{ 0 }-> activate(f(encArg(x_113), encArg(x_26))) :|: x_113 >= 0, z = 1 + (1 + x_113 + x_26), x_26 >= 0 encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 1 encode_a -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z = 2, X >= 0, 2 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 2 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 0 = X encode_activate(z) -{ 1 }-> b :|: z = 2, 2 = 2 encode_activate(z) -{ 2 }-> b :|: z = 1, 2 = 2 encode_activate(z) -{ 0 }-> activate(f(encArg(x_129), encArg(x_214))) :|: z = 1 + x_129 + x_214, x_214 >= 0, x_129 >= 0 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_b -{ 1 }-> 2 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_n__b -{ 0 }-> 2 :|: encode_n__b -{ 0 }-> 0 :|: f(z, z') -{ 2 }-> s :|: s >= 0, s <= 0, z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {b}, {activate}, {encode_b}, {encode_n__b}, {encArg}, {encode_activate}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] b: runtime: ?, size: O(1) [2] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: b after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 2 :|: z = 2 activate(z) -{ 2 }-> 0 :|: z = 2 b -{ 1 }-> 2 :|: b -{ 1 }-> 0 :|: encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z = 1 + 2, X >= 0, 2 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 2 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 0 = X encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 }-> b :|: z = 1 + 2, 2 = 2 encArg(z) -{ 2 }-> b :|: z = 1 + 1, 2 = 2 encArg(z) -{ 0 }-> activate(f(encArg(x_113), encArg(x_26))) :|: x_113 >= 0, z = 1 + (1 + x_113 + x_26), x_26 >= 0 encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 1 encode_a -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z = 2, X >= 0, 2 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 2 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 0 = X encode_activate(z) -{ 1 }-> b :|: z = 2, 2 = 2 encode_activate(z) -{ 2 }-> b :|: z = 1, 2 = 2 encode_activate(z) -{ 0 }-> activate(f(encArg(x_129), encArg(x_214))) :|: z = 1 + x_129 + x_214, x_214 >= 0, x_129 >= 0 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_b -{ 1 }-> 2 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_n__b -{ 0 }-> 2 :|: encode_n__b -{ 0 }-> 0 :|: f(z, z') -{ 2 }-> s :|: s >= 0, s <= 0, z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {activate}, {encode_b}, {encode_n__b}, {encArg}, {encode_activate}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [2] ---------------------------------------- (39) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 2 :|: z = 2 activate(z) -{ 2 }-> 0 :|: z = 2 b -{ 1 }-> 2 :|: b -{ 1 }-> 0 :|: encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z = 1 + 2, X >= 0, 2 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 2 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 0 = X encArg(z) -{ 2 }-> s' :|: s' >= 0, s' <= 2, z = 1 + 2, 2 = 2 encArg(z) -{ 3 }-> s1 :|: s1 >= 0, s1 <= 2, z = 1 + 1, 2 = 2 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(f(encArg(x_113), encArg(x_26))) :|: x_113 >= 0, z = 1 + (1 + x_113 + x_26), x_26 >= 0 encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 1 encode_a -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z = 2, X >= 0, 2 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 2 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 0 = X encode_activate(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 2, z = 2, 2 = 2 encode_activate(z) -{ 3 }-> s2 :|: s2 >= 0, s2 <= 2, z = 1, 2 = 2 encode_activate(z) -{ 0 }-> activate(f(encArg(x_129), encArg(x_214))) :|: z = 1 + x_129 + x_214, x_214 >= 0, x_129 >= 0 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_b -{ 1 }-> 2 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_n__b -{ 0 }-> 2 :|: encode_n__b -{ 0 }-> 0 :|: f(z, z') -{ 2 }-> s :|: s >= 0, s <= 0, z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {activate}, {encode_b}, {encode_n__b}, {encArg}, {encode_activate}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [2] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: activate after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 2 :|: z = 2 activate(z) -{ 2 }-> 0 :|: z = 2 b -{ 1 }-> 2 :|: b -{ 1 }-> 0 :|: encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z = 1 + 2, X >= 0, 2 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 2 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 0 = X encArg(z) -{ 2 }-> s' :|: s' >= 0, s' <= 2, z = 1 + 2, 2 = 2 encArg(z) -{ 3 }-> s1 :|: s1 >= 0, s1 <= 2, z = 1 + 1, 2 = 2 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(f(encArg(x_113), encArg(x_26))) :|: x_113 >= 0, z = 1 + (1 + x_113 + x_26), x_26 >= 0 encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 1 encode_a -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z = 2, X >= 0, 2 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 2 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 0 = X encode_activate(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 2, z = 2, 2 = 2 encode_activate(z) -{ 3 }-> s2 :|: s2 >= 0, s2 <= 2, z = 1, 2 = 2 encode_activate(z) -{ 0 }-> activate(f(encArg(x_129), encArg(x_214))) :|: z = 1 + x_129 + x_214, x_214 >= 0, x_129 >= 0 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_b -{ 1 }-> 2 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_n__b -{ 0 }-> 2 :|: encode_n__b -{ 0 }-> 0 :|: f(z, z') -{ 2 }-> s :|: s >= 0, s <= 0, z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {activate}, {encode_b}, {encode_n__b}, {encArg}, {encode_activate}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [2] activate: runtime: ?, size: O(n^1) [z] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: activate after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 2 :|: z = 2 activate(z) -{ 2 }-> 0 :|: z = 2 b -{ 1 }-> 2 :|: b -{ 1 }-> 0 :|: encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z = 1 + 2, X >= 0, 2 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 2 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 0 = X encArg(z) -{ 2 }-> s' :|: s' >= 0, s' <= 2, z = 1 + 2, 2 = 2 encArg(z) -{ 3 }-> s1 :|: s1 >= 0, s1 <= 2, z = 1 + 1, 2 = 2 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(f(encArg(x_113), encArg(x_26))) :|: x_113 >= 0, z = 1 + (1 + x_113 + x_26), x_26 >= 0 encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 1 encode_a -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z = 2, X >= 0, 2 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 2 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 0 = X encode_activate(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 2, z = 2, 2 = 2 encode_activate(z) -{ 3 }-> s2 :|: s2 >= 0, s2 <= 2, z = 1, 2 = 2 encode_activate(z) -{ 0 }-> activate(f(encArg(x_129), encArg(x_214))) :|: z = 1 + x_129 + x_214, x_214 >= 0, x_129 >= 0 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_b -{ 1 }-> 2 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_n__b -{ 0 }-> 2 :|: encode_n__b -{ 0 }-> 0 :|: f(z, z') -{ 2 }-> s :|: s >= 0, s <= 0, z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_b}, {encode_n__b}, {encArg}, {encode_activate}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [2] activate: runtime: O(1) [2], size: O(n^1) [z] ---------------------------------------- (45) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 2 :|: z = 2 activate(z) -{ 2 }-> 0 :|: z = 2 b -{ 1 }-> 2 :|: b -{ 1 }-> 0 :|: encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z = 1 + 2, X >= 0, 2 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 2 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 0 = X encArg(z) -{ 2 }-> s' :|: s' >= 0, s' <= 2, z = 1 + 2, 2 = 2 encArg(z) -{ 3 }-> s1 :|: s1 >= 0, s1 <= 2, z = 1 + 1, 2 = 2 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(f(encArg(x_113), encArg(x_26))) :|: x_113 >= 0, z = 1 + (1 + x_113 + x_26), x_26 >= 0 encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 1 encode_a -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z = 2, X >= 0, 2 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 2 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 0 = X encode_activate(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 2, z = 2, 2 = 2 encode_activate(z) -{ 3 }-> s2 :|: s2 >= 0, s2 <= 2, z = 1, 2 = 2 encode_activate(z) -{ 0 }-> activate(f(encArg(x_129), encArg(x_214))) :|: z = 1 + x_129 + x_214, x_214 >= 0, x_129 >= 0 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_b -{ 1 }-> 2 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_n__b -{ 0 }-> 2 :|: encode_n__b -{ 0 }-> 0 :|: f(z, z') -{ 2 }-> s :|: s >= 0, s <= 0, z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_b}, {encode_n__b}, {encArg}, {encode_activate}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [2] activate: runtime: O(1) [2], size: O(n^1) [z] ---------------------------------------- (47) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_b after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 2 :|: z = 2 activate(z) -{ 2 }-> 0 :|: z = 2 b -{ 1 }-> 2 :|: b -{ 1 }-> 0 :|: encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z = 1 + 2, X >= 0, 2 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 2 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 0 = X encArg(z) -{ 2 }-> s' :|: s' >= 0, s' <= 2, z = 1 + 2, 2 = 2 encArg(z) -{ 3 }-> s1 :|: s1 >= 0, s1 <= 2, z = 1 + 1, 2 = 2 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(f(encArg(x_113), encArg(x_26))) :|: x_113 >= 0, z = 1 + (1 + x_113 + x_26), x_26 >= 0 encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 1 encode_a -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z = 2, X >= 0, 2 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 2 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 0 = X encode_activate(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 2, z = 2, 2 = 2 encode_activate(z) -{ 3 }-> s2 :|: s2 >= 0, s2 <= 2, z = 1, 2 = 2 encode_activate(z) -{ 0 }-> activate(f(encArg(x_129), encArg(x_214))) :|: z = 1 + x_129 + x_214, x_214 >= 0, x_129 >= 0 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_b -{ 1 }-> 2 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_n__b -{ 0 }-> 2 :|: encode_n__b -{ 0 }-> 0 :|: f(z, z') -{ 2 }-> s :|: s >= 0, s <= 0, z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_b}, {encode_n__b}, {encArg}, {encode_activate}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [2] activate: runtime: O(1) [2], size: O(n^1) [z] encode_b: runtime: ?, size: O(1) [2] ---------------------------------------- (49) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_b after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 2 :|: z = 2 activate(z) -{ 2 }-> 0 :|: z = 2 b -{ 1 }-> 2 :|: b -{ 1 }-> 0 :|: encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z = 1 + 2, X >= 0, 2 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 2 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 0 = X encArg(z) -{ 2 }-> s' :|: s' >= 0, s' <= 2, z = 1 + 2, 2 = 2 encArg(z) -{ 3 }-> s1 :|: s1 >= 0, s1 <= 2, z = 1 + 1, 2 = 2 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(f(encArg(x_113), encArg(x_26))) :|: x_113 >= 0, z = 1 + (1 + x_113 + x_26), x_26 >= 0 encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 1 encode_a -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z = 2, X >= 0, 2 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 2 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 0 = X encode_activate(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 2, z = 2, 2 = 2 encode_activate(z) -{ 3 }-> s2 :|: s2 >= 0, s2 <= 2, z = 1, 2 = 2 encode_activate(z) -{ 0 }-> activate(f(encArg(x_129), encArg(x_214))) :|: z = 1 + x_129 + x_214, x_214 >= 0, x_129 >= 0 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_b -{ 1 }-> 2 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_n__b -{ 0 }-> 2 :|: encode_n__b -{ 0 }-> 0 :|: f(z, z') -{ 2 }-> s :|: s >= 0, s <= 0, z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_n__b}, {encArg}, {encode_activate}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [2] activate: runtime: O(1) [2], size: O(n^1) [z] encode_b: runtime: O(1) [1], size: O(1) [2] ---------------------------------------- (51) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 2 :|: z = 2 activate(z) -{ 2 }-> 0 :|: z = 2 b -{ 1 }-> 2 :|: b -{ 1 }-> 0 :|: encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z = 1 + 2, X >= 0, 2 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 2 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 0 = X encArg(z) -{ 2 }-> s' :|: s' >= 0, s' <= 2, z = 1 + 2, 2 = 2 encArg(z) -{ 3 }-> s1 :|: s1 >= 0, s1 <= 2, z = 1 + 1, 2 = 2 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(f(encArg(x_113), encArg(x_26))) :|: x_113 >= 0, z = 1 + (1 + x_113 + x_26), x_26 >= 0 encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 1 encode_a -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z = 2, X >= 0, 2 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 2 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 0 = X encode_activate(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 2, z = 2, 2 = 2 encode_activate(z) -{ 3 }-> s2 :|: s2 >= 0, s2 <= 2, z = 1, 2 = 2 encode_activate(z) -{ 0 }-> activate(f(encArg(x_129), encArg(x_214))) :|: z = 1 + x_129 + x_214, x_214 >= 0, x_129 >= 0 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_b -{ 1 }-> 2 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_n__b -{ 0 }-> 2 :|: encode_n__b -{ 0 }-> 0 :|: f(z, z') -{ 2 }-> s :|: s >= 0, s <= 0, z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_n__b}, {encArg}, {encode_activate}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [2] activate: runtime: O(1) [2], size: O(n^1) [z] encode_b: runtime: O(1) [1], size: O(1) [2] ---------------------------------------- (53) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_n__b after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 2 :|: z = 2 activate(z) -{ 2 }-> 0 :|: z = 2 b -{ 1 }-> 2 :|: b -{ 1 }-> 0 :|: encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z = 1 + 2, X >= 0, 2 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 2 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 0 = X encArg(z) -{ 2 }-> s' :|: s' >= 0, s' <= 2, z = 1 + 2, 2 = 2 encArg(z) -{ 3 }-> s1 :|: s1 >= 0, s1 <= 2, z = 1 + 1, 2 = 2 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(f(encArg(x_113), encArg(x_26))) :|: x_113 >= 0, z = 1 + (1 + x_113 + x_26), x_26 >= 0 encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 1 encode_a -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z = 2, X >= 0, 2 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 2 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 0 = X encode_activate(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 2, z = 2, 2 = 2 encode_activate(z) -{ 3 }-> s2 :|: s2 >= 0, s2 <= 2, z = 1, 2 = 2 encode_activate(z) -{ 0 }-> activate(f(encArg(x_129), encArg(x_214))) :|: z = 1 + x_129 + x_214, x_214 >= 0, x_129 >= 0 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_b -{ 1 }-> 2 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_n__b -{ 0 }-> 2 :|: encode_n__b -{ 0 }-> 0 :|: f(z, z') -{ 2 }-> s :|: s >= 0, s <= 0, z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_n__b}, {encArg}, {encode_activate}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [2] activate: runtime: O(1) [2], size: O(n^1) [z] encode_b: runtime: O(1) [1], size: O(1) [2] encode_n__b: runtime: ?, size: O(1) [2] ---------------------------------------- (55) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_n__b after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 2 :|: z = 2 activate(z) -{ 2 }-> 0 :|: z = 2 b -{ 1 }-> 2 :|: b -{ 1 }-> 0 :|: encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z = 1 + 2, X >= 0, 2 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 2 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 0 = X encArg(z) -{ 2 }-> s' :|: s' >= 0, s' <= 2, z = 1 + 2, 2 = 2 encArg(z) -{ 3 }-> s1 :|: s1 >= 0, s1 <= 2, z = 1 + 1, 2 = 2 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(f(encArg(x_113), encArg(x_26))) :|: x_113 >= 0, z = 1 + (1 + x_113 + x_26), x_26 >= 0 encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 1 encode_a -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z = 2, X >= 0, 2 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 2 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 0 = X encode_activate(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 2, z = 2, 2 = 2 encode_activate(z) -{ 3 }-> s2 :|: s2 >= 0, s2 <= 2, z = 1, 2 = 2 encode_activate(z) -{ 0 }-> activate(f(encArg(x_129), encArg(x_214))) :|: z = 1 + x_129 + x_214, x_214 >= 0, x_129 >= 0 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_b -{ 1 }-> 2 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_n__b -{ 0 }-> 2 :|: encode_n__b -{ 0 }-> 0 :|: f(z, z') -{ 2 }-> s :|: s >= 0, s <= 0, z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encArg}, {encode_activate}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [2] activate: runtime: O(1) [2], size: O(n^1) [z] encode_b: runtime: O(1) [1], size: O(1) [2] encode_n__b: runtime: O(1) [0], size: O(1) [2] ---------------------------------------- (57) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 2 :|: z = 2 activate(z) -{ 2 }-> 0 :|: z = 2 b -{ 1 }-> 2 :|: b -{ 1 }-> 0 :|: encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z = 1 + 2, X >= 0, 2 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 2 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 0 = X encArg(z) -{ 2 }-> s' :|: s' >= 0, s' <= 2, z = 1 + 2, 2 = 2 encArg(z) -{ 3 }-> s1 :|: s1 >= 0, s1 <= 2, z = 1 + 1, 2 = 2 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(f(encArg(x_113), encArg(x_26))) :|: x_113 >= 0, z = 1 + (1 + x_113 + x_26), x_26 >= 0 encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 1 encode_a -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z = 2, X >= 0, 2 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 2 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 0 = X encode_activate(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 2, z = 2, 2 = 2 encode_activate(z) -{ 3 }-> s2 :|: s2 >= 0, s2 <= 2, z = 1, 2 = 2 encode_activate(z) -{ 0 }-> activate(f(encArg(x_129), encArg(x_214))) :|: z = 1 + x_129 + x_214, x_214 >= 0, x_129 >= 0 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_b -{ 1 }-> 2 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_n__b -{ 0 }-> 2 :|: encode_n__b -{ 0 }-> 0 :|: f(z, z') -{ 2 }-> s :|: s >= 0, s <= 0, z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encArg}, {encode_activate}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [2] activate: runtime: O(1) [2], size: O(n^1) [z] encode_b: runtime: O(1) [1], size: O(1) [2] encode_n__b: runtime: O(1) [0], size: O(1) [2] ---------------------------------------- (59) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 2 :|: z = 2 activate(z) -{ 2 }-> 0 :|: z = 2 b -{ 1 }-> 2 :|: b -{ 1 }-> 0 :|: encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z = 1 + 2, X >= 0, 2 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 2 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 0 = X encArg(z) -{ 2 }-> s' :|: s' >= 0, s' <= 2, z = 1 + 2, 2 = 2 encArg(z) -{ 3 }-> s1 :|: s1 >= 0, s1 <= 2, z = 1 + 1, 2 = 2 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(f(encArg(x_113), encArg(x_26))) :|: x_113 >= 0, z = 1 + (1 + x_113 + x_26), x_26 >= 0 encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 1 encode_a -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z = 2, X >= 0, 2 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 2 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 0 = X encode_activate(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 2, z = 2, 2 = 2 encode_activate(z) -{ 3 }-> s2 :|: s2 >= 0, s2 <= 2, z = 1, 2 = 2 encode_activate(z) -{ 0 }-> activate(f(encArg(x_129), encArg(x_214))) :|: z = 1 + x_129 + x_214, x_214 >= 0, x_129 >= 0 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_b -{ 1 }-> 2 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_n__b -{ 0 }-> 2 :|: encode_n__b -{ 0 }-> 0 :|: f(z, z') -{ 2 }-> s :|: s >= 0, s <= 0, z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encArg}, {encode_activate}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [2] activate: runtime: O(1) [2], size: O(n^1) [z] encode_b: runtime: O(1) [1], size: O(1) [2] encode_n__b: runtime: O(1) [0], size: O(1) [2] encArg: runtime: ?, size: O(1) [2] ---------------------------------------- (61) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + 4*z ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 2 :|: z = 2 activate(z) -{ 2 }-> 0 :|: z = 2 b -{ 1 }-> 2 :|: b -{ 1 }-> 0 :|: encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z = 1 + 2, X >= 0, 2 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 2 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 0 = X encArg(z) -{ 2 }-> s' :|: s' >= 0, s' <= 2, z = 1 + 2, 2 = 2 encArg(z) -{ 3 }-> s1 :|: s1 >= 0, s1 <= 2, z = 1 + 1, 2 = 2 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> activate(f(encArg(x_113), encArg(x_26))) :|: x_113 >= 0, z = 1 + (1 + x_113 + x_26), x_26 >= 0 encArg(z) -{ 0 }-> activate(activate(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 1 encode_a -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z = 2, X >= 0, 2 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 2 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 0 = X encode_activate(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 2, z = 2, 2 = 2 encode_activate(z) -{ 3 }-> s2 :|: s2 >= 0, s2 <= 2, z = 1, 2 = 2 encode_activate(z) -{ 0 }-> activate(f(encArg(x_129), encArg(x_214))) :|: z = 1 + x_129 + x_214, x_214 >= 0, x_129 >= 0 encode_activate(z) -{ 0 }-> activate(activate(encArg(z - 1))) :|: z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_b -{ 1 }-> 2 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_n__b -{ 0 }-> 2 :|: encode_n__b -{ 0 }-> 0 :|: f(z, z') -{ 2 }-> s :|: s >= 0, s <= 0, z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_activate}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [2] activate: runtime: O(1) [2], size: O(n^1) [z] encode_b: runtime: O(1) [1], size: O(1) [2] encode_n__b: runtime: O(1) [0], size: O(1) [2] encArg: runtime: O(n^1) [3 + 4*z], size: O(1) [2] ---------------------------------------- (63) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (64) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 2 :|: z = 2 activate(z) -{ 2 }-> 0 :|: z = 2 b -{ 1 }-> 2 :|: b -{ 1 }-> 0 :|: encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z = 1 + 2, X >= 0, 2 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 2 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 0 = X encArg(z) -{ 2 }-> s' :|: s' >= 0, s' <= 2, z = 1 + 2, 2 = 2 encArg(z) -{ 3 }-> s1 :|: s1 >= 0, s1 <= 2, z = 1 + 1, 2 = 2 encArg(z) -{ 9 + 4*x_113 + 4*x_26 }-> s12 :|: s9 >= 0, s9 <= 2, s10 >= 0, s10 <= 2, s11 >= 0, s11 <= 0, s12 >= 0, s12 <= s11, x_113 >= 0, z = 1 + (1 + x_113 + x_26), x_26 >= 0 encArg(z) -{ -1 + 4*z }-> s15 :|: s13 >= 0, s13 <= 2, s14 >= 0, s14 <= s13, s15 >= 0, s15 <= s14, z - 2 >= 0 encArg(z) -{ 7 + 4*x_1 + 4*x_2 }-> s5 :|: s3 >= 0, s3 <= 2, s4 >= 0, s4 <= 2, s5 >= 0, s5 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 1 encode_a -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z = 2, X >= 0, 2 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 2 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 0 = X encode_activate(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 2, z = 2, 2 = 2 encode_activate(z) -{ 9 + 4*x_129 + 4*x_214 }-> s19 :|: s16 >= 0, s16 <= 2, s17 >= 0, s17 <= 2, s18 >= 0, s18 <= 0, s19 >= 0, s19 <= s18, z = 1 + x_129 + x_214, x_214 >= 0, x_129 >= 0 encode_activate(z) -{ 3 }-> s2 :|: s2 >= 0, s2 <= 2, z = 1, 2 = 2 encode_activate(z) -{ 3 + 4*z }-> s22 :|: s20 >= 0, s20 <= 2, s21 >= 0, s21 <= s20, s22 >= 0, s22 <= s21, z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_b -{ 1 }-> 2 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_f(z, z') -{ 7 + 4*z + 4*z' }-> s8 :|: s6 >= 0, s6 <= 2, s7 >= 0, s7 <= 2, s8 >= 0, s8 <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_n__b -{ 0 }-> 2 :|: encode_n__b -{ 0 }-> 0 :|: f(z, z') -{ 2 }-> s :|: s >= 0, s <= 0, z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_activate}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [2] activate: runtime: O(1) [2], size: O(n^1) [z] encode_b: runtime: O(1) [1], size: O(1) [2] encode_n__b: runtime: O(1) [0], size: O(1) [2] encArg: runtime: O(n^1) [3 + 4*z], size: O(1) [2] ---------------------------------------- (65) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_activate after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (66) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 2 :|: z = 2 activate(z) -{ 2 }-> 0 :|: z = 2 b -{ 1 }-> 2 :|: b -{ 1 }-> 0 :|: encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z = 1 + 2, X >= 0, 2 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 2 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 0 = X encArg(z) -{ 2 }-> s' :|: s' >= 0, s' <= 2, z = 1 + 2, 2 = 2 encArg(z) -{ 3 }-> s1 :|: s1 >= 0, s1 <= 2, z = 1 + 1, 2 = 2 encArg(z) -{ 9 + 4*x_113 + 4*x_26 }-> s12 :|: s9 >= 0, s9 <= 2, s10 >= 0, s10 <= 2, s11 >= 0, s11 <= 0, s12 >= 0, s12 <= s11, x_113 >= 0, z = 1 + (1 + x_113 + x_26), x_26 >= 0 encArg(z) -{ -1 + 4*z }-> s15 :|: s13 >= 0, s13 <= 2, s14 >= 0, s14 <= s13, s15 >= 0, s15 <= s14, z - 2 >= 0 encArg(z) -{ 7 + 4*x_1 + 4*x_2 }-> s5 :|: s3 >= 0, s3 <= 2, s4 >= 0, s4 <= 2, s5 >= 0, s5 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 1 encode_a -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z = 2, X >= 0, 2 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 2 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 0 = X encode_activate(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 2, z = 2, 2 = 2 encode_activate(z) -{ 9 + 4*x_129 + 4*x_214 }-> s19 :|: s16 >= 0, s16 <= 2, s17 >= 0, s17 <= 2, s18 >= 0, s18 <= 0, s19 >= 0, s19 <= s18, z = 1 + x_129 + x_214, x_214 >= 0, x_129 >= 0 encode_activate(z) -{ 3 }-> s2 :|: s2 >= 0, s2 <= 2, z = 1, 2 = 2 encode_activate(z) -{ 3 + 4*z }-> s22 :|: s20 >= 0, s20 <= 2, s21 >= 0, s21 <= s20, s22 >= 0, s22 <= s21, z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_b -{ 1 }-> 2 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_f(z, z') -{ 7 + 4*z + 4*z' }-> s8 :|: s6 >= 0, s6 <= 2, s7 >= 0, s7 <= 2, s8 >= 0, s8 <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_n__b -{ 0 }-> 2 :|: encode_n__b -{ 0 }-> 0 :|: f(z, z') -{ 2 }-> s :|: s >= 0, s <= 0, z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_activate}, {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [2] activate: runtime: O(1) [2], size: O(n^1) [z] encode_b: runtime: O(1) [1], size: O(1) [2] encode_n__b: runtime: O(1) [0], size: O(1) [2] encArg: runtime: O(n^1) [3 + 4*z], size: O(1) [2] encode_activate: runtime: ?, size: O(1) [2] ---------------------------------------- (67) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_activate after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 5 + 4*z ---------------------------------------- (68) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 2 :|: z = 2 activate(z) -{ 2 }-> 0 :|: z = 2 b -{ 1 }-> 2 :|: b -{ 1 }-> 0 :|: encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z = 1 + 2, X >= 0, 2 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 2 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 0 = X encArg(z) -{ 2 }-> s' :|: s' >= 0, s' <= 2, z = 1 + 2, 2 = 2 encArg(z) -{ 3 }-> s1 :|: s1 >= 0, s1 <= 2, z = 1 + 1, 2 = 2 encArg(z) -{ 9 + 4*x_113 + 4*x_26 }-> s12 :|: s9 >= 0, s9 <= 2, s10 >= 0, s10 <= 2, s11 >= 0, s11 <= 0, s12 >= 0, s12 <= s11, x_113 >= 0, z = 1 + (1 + x_113 + x_26), x_26 >= 0 encArg(z) -{ -1 + 4*z }-> s15 :|: s13 >= 0, s13 <= 2, s14 >= 0, s14 <= s13, s15 >= 0, s15 <= s14, z - 2 >= 0 encArg(z) -{ 7 + 4*x_1 + 4*x_2 }-> s5 :|: s3 >= 0, s3 <= 2, s4 >= 0, s4 <= 2, s5 >= 0, s5 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 1 encode_a -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z = 2, X >= 0, 2 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 2 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 0 = X encode_activate(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 2, z = 2, 2 = 2 encode_activate(z) -{ 9 + 4*x_129 + 4*x_214 }-> s19 :|: s16 >= 0, s16 <= 2, s17 >= 0, s17 <= 2, s18 >= 0, s18 <= 0, s19 >= 0, s19 <= s18, z = 1 + x_129 + x_214, x_214 >= 0, x_129 >= 0 encode_activate(z) -{ 3 }-> s2 :|: s2 >= 0, s2 <= 2, z = 1, 2 = 2 encode_activate(z) -{ 3 + 4*z }-> s22 :|: s20 >= 0, s20 <= 2, s21 >= 0, s21 <= s20, s22 >= 0, s22 <= s21, z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_b -{ 1 }-> 2 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_f(z, z') -{ 7 + 4*z + 4*z' }-> s8 :|: s6 >= 0, s6 <= 2, s7 >= 0, s7 <= 2, s8 >= 0, s8 <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_n__b -{ 0 }-> 2 :|: encode_n__b -{ 0 }-> 0 :|: f(z, z') -{ 2 }-> s :|: s >= 0, s <= 0, z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [2] activate: runtime: O(1) [2], size: O(n^1) [z] encode_b: runtime: O(1) [1], size: O(1) [2] encode_n__b: runtime: O(1) [0], size: O(1) [2] encArg: runtime: O(n^1) [3 + 4*z], size: O(1) [2] encode_activate: runtime: O(n^1) [5 + 4*z], size: O(1) [2] ---------------------------------------- (69) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (70) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 2 :|: z = 2 activate(z) -{ 2 }-> 0 :|: z = 2 b -{ 1 }-> 2 :|: b -{ 1 }-> 0 :|: encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z = 1 + 2, X >= 0, 2 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 2 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 0 = X encArg(z) -{ 2 }-> s' :|: s' >= 0, s' <= 2, z = 1 + 2, 2 = 2 encArg(z) -{ 3 }-> s1 :|: s1 >= 0, s1 <= 2, z = 1 + 1, 2 = 2 encArg(z) -{ 9 + 4*x_113 + 4*x_26 }-> s12 :|: s9 >= 0, s9 <= 2, s10 >= 0, s10 <= 2, s11 >= 0, s11 <= 0, s12 >= 0, s12 <= s11, x_113 >= 0, z = 1 + (1 + x_113 + x_26), x_26 >= 0 encArg(z) -{ -1 + 4*z }-> s15 :|: s13 >= 0, s13 <= 2, s14 >= 0, s14 <= s13, s15 >= 0, s15 <= s14, z - 2 >= 0 encArg(z) -{ 7 + 4*x_1 + 4*x_2 }-> s5 :|: s3 >= 0, s3 <= 2, s4 >= 0, s4 <= 2, s5 >= 0, s5 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 1 encode_a -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z = 2, X >= 0, 2 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 2 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 0 = X encode_activate(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 2, z = 2, 2 = 2 encode_activate(z) -{ 9 + 4*x_129 + 4*x_214 }-> s19 :|: s16 >= 0, s16 <= 2, s17 >= 0, s17 <= 2, s18 >= 0, s18 <= 0, s19 >= 0, s19 <= s18, z = 1 + x_129 + x_214, x_214 >= 0, x_129 >= 0 encode_activate(z) -{ 3 }-> s2 :|: s2 >= 0, s2 <= 2, z = 1, 2 = 2 encode_activate(z) -{ 3 + 4*z }-> s22 :|: s20 >= 0, s20 <= 2, s21 >= 0, s21 <= s20, s22 >= 0, s22 <= s21, z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_b -{ 1 }-> 2 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_f(z, z') -{ 7 + 4*z + 4*z' }-> s8 :|: s6 >= 0, s6 <= 2, s7 >= 0, s7 <= 2, s8 >= 0, s8 <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_n__b -{ 0 }-> 2 :|: encode_n__b -{ 0 }-> 0 :|: f(z, z') -{ 2 }-> s :|: s >= 0, s <= 0, z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [2] activate: runtime: O(1) [2], size: O(n^1) [z] encode_b: runtime: O(1) [1], size: O(1) [2] encode_n__b: runtime: O(1) [0], size: O(1) [2] encArg: runtime: O(n^1) [3 + 4*z], size: O(1) [2] encode_activate: runtime: O(n^1) [5 + 4*z], size: O(1) [2] ---------------------------------------- (71) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (72) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 2 :|: z = 2 activate(z) -{ 2 }-> 0 :|: z = 2 b -{ 1 }-> 2 :|: b -{ 1 }-> 0 :|: encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z = 1 + 2, X >= 0, 2 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 2 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 0 = X encArg(z) -{ 2 }-> s' :|: s' >= 0, s' <= 2, z = 1 + 2, 2 = 2 encArg(z) -{ 3 }-> s1 :|: s1 >= 0, s1 <= 2, z = 1 + 1, 2 = 2 encArg(z) -{ 9 + 4*x_113 + 4*x_26 }-> s12 :|: s9 >= 0, s9 <= 2, s10 >= 0, s10 <= 2, s11 >= 0, s11 <= 0, s12 >= 0, s12 <= s11, x_113 >= 0, z = 1 + (1 + x_113 + x_26), x_26 >= 0 encArg(z) -{ -1 + 4*z }-> s15 :|: s13 >= 0, s13 <= 2, s14 >= 0, s14 <= s13, s15 >= 0, s15 <= s14, z - 2 >= 0 encArg(z) -{ 7 + 4*x_1 + 4*x_2 }-> s5 :|: s3 >= 0, s3 <= 2, s4 >= 0, s4 <= 2, s5 >= 0, s5 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 1 encode_a -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z = 2, X >= 0, 2 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 2 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 0 = X encode_activate(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 2, z = 2, 2 = 2 encode_activate(z) -{ 9 + 4*x_129 + 4*x_214 }-> s19 :|: s16 >= 0, s16 <= 2, s17 >= 0, s17 <= 2, s18 >= 0, s18 <= 0, s19 >= 0, s19 <= s18, z = 1 + x_129 + x_214, x_214 >= 0, x_129 >= 0 encode_activate(z) -{ 3 }-> s2 :|: s2 >= 0, s2 <= 2, z = 1, 2 = 2 encode_activate(z) -{ 3 + 4*z }-> s22 :|: s20 >= 0, s20 <= 2, s21 >= 0, s21 <= s20, s22 >= 0, s22 <= s21, z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_b -{ 1 }-> 2 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_f(z, z') -{ 7 + 4*z + 4*z' }-> s8 :|: s6 >= 0, s6 <= 2, s7 >= 0, s7 <= 2, s8 >= 0, s8 <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_n__b -{ 0 }-> 2 :|: encode_n__b -{ 0 }-> 0 :|: f(z, z') -{ 2 }-> s :|: s >= 0, s <= 0, z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_f} Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [2] activate: runtime: O(1) [2], size: O(n^1) [z] encode_b: runtime: O(1) [1], size: O(1) [2] encode_n__b: runtime: O(1) [0], size: O(1) [2] encArg: runtime: O(n^1) [3 + 4*z], size: O(1) [2] encode_activate: runtime: O(n^1) [5 + 4*z], size: O(1) [2] encode_f: runtime: ?, size: O(1) [0] ---------------------------------------- (73) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 7 + 4*z + 4*z' ---------------------------------------- (74) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 2 :|: z = 2 activate(z) -{ 2 }-> 0 :|: z = 2 b -{ 1 }-> 2 :|: b -{ 1 }-> 0 :|: encArg(z) -{ 1 }-> X :|: z = 1 + 0, X >= 0, 0 = X encArg(z) -{ 1 }-> X :|: z = 1 + 2, X >= 0, 2 = X encArg(z) -{ 1 }-> X :|: z - 1 >= 0, X >= 0, 0 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 2 = X encArg(z) -{ 2 }-> X :|: z = 1 + 1, X >= 0, 0 = X encArg(z) -{ 2 }-> s' :|: s' >= 0, s' <= 2, z = 1 + 2, 2 = 2 encArg(z) -{ 3 }-> s1 :|: s1 >= 0, s1 <= 2, z = 1 + 1, 2 = 2 encArg(z) -{ 9 + 4*x_113 + 4*x_26 }-> s12 :|: s9 >= 0, s9 <= 2, s10 >= 0, s10 <= 2, s11 >= 0, s11 <= 0, s12 >= 0, s12 <= s11, x_113 >= 0, z = 1 + (1 + x_113 + x_26), x_26 >= 0 encArg(z) -{ -1 + 4*z }-> s15 :|: s13 >= 0, s13 <= 2, s14 >= 0, s14 <= s13, s15 >= 0, s15 <= s14, z - 2 >= 0 encArg(z) -{ 7 + 4*x_1 + 4*x_2 }-> s5 :|: s3 >= 0, s3 <= 2, s4 >= 0, s4 <= 2, s5 >= 0, s5 <= 0, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 1 }-> 2 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 1 }-> 0 :|: z = 1 encode_a -{ 0 }-> 0 :|: encode_activate(z) -{ 1 }-> X :|: z = 0, X >= 0, 0 = X encode_activate(z) -{ 1 }-> X :|: z = 2, X >= 0, 2 = X encode_activate(z) -{ 1 }-> X :|: z >= 0, X >= 0, 0 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 2 = X encode_activate(z) -{ 2 }-> X :|: z = 1, X >= 0, 0 = X encode_activate(z) -{ 2 }-> s'' :|: s'' >= 0, s'' <= 2, z = 2, 2 = 2 encode_activate(z) -{ 9 + 4*x_129 + 4*x_214 }-> s19 :|: s16 >= 0, s16 <= 2, s17 >= 0, s17 <= 2, s18 >= 0, s18 <= 0, s19 >= 0, s19 <= s18, z = 1 + x_129 + x_214, x_214 >= 0, x_129 >= 0 encode_activate(z) -{ 3 }-> s2 :|: s2 >= 0, s2 <= 2, z = 1, 2 = 2 encode_activate(z) -{ 3 + 4*z }-> s22 :|: s20 >= 0, s20 <= 2, s21 >= 0, s21 <= s20, s22 >= 0, s22 <= s21, z - 1 >= 0 encode_activate(z) -{ 0 }-> 0 :|: z >= 0 encode_b -{ 1 }-> 2 :|: encode_b -{ 0 }-> 0 :|: encode_b -{ 1 }-> 0 :|: encode_f(z, z') -{ 7 + 4*z + 4*z' }-> s8 :|: s6 >= 0, s6 <= 2, s7 >= 0, s7 <= 2, s8 >= 0, s8 <= 0, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_n__b -{ 0 }-> 2 :|: encode_n__b -{ 0 }-> 0 :|: f(z, z') -{ 2 }-> s :|: s >= 0, s <= 0, z' >= 0, z = z' f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: Previous analysis results are: encode_a: runtime: O(1) [0], size: O(1) [0] f: runtime: O(1) [1], size: O(1) [0] b: runtime: O(1) [1], size: O(1) [2] activate: runtime: O(1) [2], size: O(n^1) [z] encode_b: runtime: O(1) [1], size: O(1) [2] encode_n__b: runtime: O(1) [0], size: O(1) [2] encArg: runtime: O(n^1) [3 + 4*z], size: O(1) [2] encode_activate: runtime: O(n^1) [5 + 4*z], size: O(1) [2] encode_f: runtime: O(n^1) [7 + 4*z + 4*z'], size: O(1) [0] ---------------------------------------- (75) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (76) BOUNDS(1, n^1)