/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 44 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 9 ms] (6) CdtProblem (7) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (8) CdtProblem (9) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (12) CdtProblem (13) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CdtProblem (15) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 20 ms] (16) CdtProblem (17) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (18) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(a) -> f(a) a -> b S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(b) -> b encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_a) -> a encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_b -> b ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(a) -> f(a) a -> b The (relative) TRS S consists of the following rules: encArg(b) -> b encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_a) -> a encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_b -> b Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(a) -> f(a) a -> b The (relative) TRS S consists of the following rules: encArg(b) -> b encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_a) -> a encode_f(x_1) -> f(encArg(x_1)) encode_a -> a encode_b -> b Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_b -> b f(a) -> f(a) a -> b Tuples: ENCARG(b) -> c ENCARG(cons_f(z0)) -> c1(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c2(A) ENCODE_F(z0) -> c3(F(encArg(z0)), ENCARG(z0)) ENCODE_A -> c4(A) ENCODE_B -> c5 F(a) -> c6(F(a), A) A -> c7 S tuples: F(a) -> c6(F(a), A) A -> c7 K tuples:none Defined Rule Symbols: f_1, a, encArg_1, encode_f_1, encode_a, encode_b Defined Pair Symbols: ENCARG_1, ENCODE_F_1, ENCODE_A, ENCODE_B, F_1, A Compound Symbols: c, c1_2, c2_1, c3_2, c4_1, c5, c6_2, c7 ---------------------------------------- (7) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_A -> c4(A) F(a) -> c6(F(a), A) Removed 2 trailing nodes: ENCARG(b) -> c ENCODE_B -> c5 ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_b -> b f(a) -> f(a) a -> b Tuples: ENCARG(cons_f(z0)) -> c1(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_a) -> c2(A) ENCODE_F(z0) -> c3(F(encArg(z0)), ENCARG(z0)) A -> c7 S tuples: A -> c7 K tuples:none Defined Rule Symbols: f_1, a, encArg_1, encode_f_1, encode_a, encode_b Defined Pair Symbols: ENCARG_1, ENCODE_F_1, A Compound Symbols: c1_2, c2_1, c3_2, c7 ---------------------------------------- (9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 2 trailing tuple parts ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_b -> b f(a) -> f(a) a -> b Tuples: ENCARG(cons_a) -> c2(A) A -> c7 ENCARG(cons_f(z0)) -> c1(ENCARG(z0)) ENCODE_F(z0) -> c3(ENCARG(z0)) S tuples: A -> c7 K tuples:none Defined Rule Symbols: f_1, a, encArg_1, encode_f_1, encode_a, encode_b Defined Pair Symbols: ENCARG_1, A, ENCODE_F_1 Compound Symbols: c2_1, c7, c1_1, c3_1 ---------------------------------------- (11) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 1 leading nodes: ENCODE_F(z0) -> c3(ENCARG(z0)) ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(b) -> b encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_b -> b f(a) -> f(a) a -> b Tuples: ENCARG(cons_a) -> c2(A) A -> c7 ENCARG(cons_f(z0)) -> c1(ENCARG(z0)) S tuples: A -> c7 K tuples:none Defined Rule Symbols: f_1, a, encArg_1, encode_f_1, encode_a, encode_b Defined Pair Symbols: ENCARG_1, A Compound Symbols: c2_1, c7, c1_1 ---------------------------------------- (13) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encArg(b) -> b encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_a) -> a encode_f(z0) -> f(encArg(z0)) encode_a -> a encode_b -> b f(a) -> f(a) a -> b ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: ENCARG(cons_a) -> c2(A) A -> c7 ENCARG(cons_f(z0)) -> c1(ENCARG(z0)) S tuples: A -> c7 K tuples:none Defined Rule Symbols:none Defined Pair Symbols: ENCARG_1, A Compound Symbols: c2_1, c7, c1_1 ---------------------------------------- (15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. A -> c7 We considered the (Usable) Rules:none And the Tuples: ENCARG(cons_a) -> c2(A) A -> c7 ENCARG(cons_f(z0)) -> c1(ENCARG(z0)) The order we found is given by the following interpretation: Polynomial interpretation : POL(A) = [2] POL(ENCARG(x_1)) = [2]x_1^2 POL(c1(x_1)) = x_1 POL(c2(x_1)) = x_1 POL(c7) = 0 POL(cons_a) = [2] POL(cons_f(x_1)) = [1] + x_1 ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: ENCARG(cons_a) -> c2(A) A -> c7 ENCARG(cons_f(z0)) -> c1(ENCARG(z0)) S tuples:none K tuples: A -> c7 Defined Rule Symbols:none Defined Pair Symbols: ENCARG_1, A Compound Symbols: c2_1, c7, c1_1 ---------------------------------------- (17) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (18) BOUNDS(1, 1)