/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 168 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a(lambda(x), y) -> lambda(a(x, p(1, a(y, t)))) a(p(x, y), z) -> p(a(x, z), a(y, z)) a(a(x, y), z) -> a(x, a(y, z)) a(id, x) -> x a(1, id) -> 1 a(t, id) -> t a(1, p(x, y)) -> x a(t, p(x, y)) -> y S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(lambda(x_1)) -> lambda(encArg(x_1)) encArg(p(x_1, x_2)) -> p(encArg(x_1), encArg(x_2)) encArg(1) -> 1 encArg(t) -> t encArg(id) -> id encArg(cons_a(x_1, x_2)) -> a(encArg(x_1), encArg(x_2)) encode_a(x_1, x_2) -> a(encArg(x_1), encArg(x_2)) encode_lambda(x_1) -> lambda(encArg(x_1)) encode_p(x_1, x_2) -> p(encArg(x_1), encArg(x_2)) encode_1 -> 1 encode_t -> t encode_id -> id ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a(lambda(x), y) -> lambda(a(x, p(1, a(y, t)))) a(p(x, y), z) -> p(a(x, z), a(y, z)) a(a(x, y), z) -> a(x, a(y, z)) a(id, x) -> x a(1, id) -> 1 a(t, id) -> t a(1, p(x, y)) -> x a(t, p(x, y)) -> y The (relative) TRS S consists of the following rules: encArg(lambda(x_1)) -> lambda(encArg(x_1)) encArg(p(x_1, x_2)) -> p(encArg(x_1), encArg(x_2)) encArg(1) -> 1 encArg(t) -> t encArg(id) -> id encArg(cons_a(x_1, x_2)) -> a(encArg(x_1), encArg(x_2)) encode_a(x_1, x_2) -> a(encArg(x_1), encArg(x_2)) encode_lambda(x_1) -> lambda(encArg(x_1)) encode_p(x_1, x_2) -> p(encArg(x_1), encArg(x_2)) encode_1 -> 1 encode_t -> t encode_id -> id Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a(lambda(x), y) -> lambda(a(x, p(1, a(y, t)))) a(p(x, y), z) -> p(a(x, z), a(y, z)) a(a(x, y), z) -> a(x, a(y, z)) a(id, x) -> x a(1, id) -> 1 a(t, id) -> t a(1, p(x, y)) -> x a(t, p(x, y)) -> y The (relative) TRS S consists of the following rules: encArg(lambda(x_1)) -> lambda(encArg(x_1)) encArg(p(x_1, x_2)) -> p(encArg(x_1), encArg(x_2)) encArg(1) -> 1 encArg(t) -> t encArg(id) -> id encArg(cons_a(x_1, x_2)) -> a(encArg(x_1), encArg(x_2)) encode_a(x_1, x_2) -> a(encArg(x_1), encArg(x_2)) encode_lambda(x_1) -> lambda(encArg(x_1)) encode_p(x_1, x_2) -> p(encArg(x_1), encArg(x_2)) encode_1 -> 1 encode_t -> t encode_id -> id Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a(lambda(x), y) -> lambda(a(x, p(1, a(y, t)))) a(p(x, y), z) -> p(a(x, z), a(y, z)) a(a(x, y), z) -> a(x, a(y, z)) a(id, x) -> x a(1, id) -> 1 a(t, id) -> t a(1, p(x, y)) -> x a(t, p(x, y)) -> y The (relative) TRS S consists of the following rules: encArg(lambda(x_1)) -> lambda(encArg(x_1)) encArg(p(x_1, x_2)) -> p(encArg(x_1), encArg(x_2)) encArg(1) -> 1 encArg(t) -> t encArg(id) -> id encArg(cons_a(x_1, x_2)) -> a(encArg(x_1), encArg(x_2)) encode_a(x_1, x_2) -> a(encArg(x_1), encArg(x_2)) encode_lambda(x_1) -> lambda(encArg(x_1)) encode_p(x_1, x_2) -> p(encArg(x_1), encArg(x_2)) encode_1 -> 1 encode_t -> t encode_id -> id Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence a(p(x, y), z) ->^+ p(a(x, z), a(y, z)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [x / p(x, y)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a(lambda(x), y) -> lambda(a(x, p(1, a(y, t)))) a(p(x, y), z) -> p(a(x, z), a(y, z)) a(a(x, y), z) -> a(x, a(y, z)) a(id, x) -> x a(1, id) -> 1 a(t, id) -> t a(1, p(x, y)) -> x a(t, p(x, y)) -> y The (relative) TRS S consists of the following rules: encArg(lambda(x_1)) -> lambda(encArg(x_1)) encArg(p(x_1, x_2)) -> p(encArg(x_1), encArg(x_2)) encArg(1) -> 1 encArg(t) -> t encArg(id) -> id encArg(cons_a(x_1, x_2)) -> a(encArg(x_1), encArg(x_2)) encode_a(x_1, x_2) -> a(encArg(x_1), encArg(x_2)) encode_lambda(x_1) -> lambda(encArg(x_1)) encode_p(x_1, x_2) -> p(encArg(x_1), encArg(x_2)) encode_1 -> 1 encode_t -> t encode_id -> id Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a(lambda(x), y) -> lambda(a(x, p(1, a(y, t)))) a(p(x, y), z) -> p(a(x, z), a(y, z)) a(a(x, y), z) -> a(x, a(y, z)) a(id, x) -> x a(1, id) -> 1 a(t, id) -> t a(1, p(x, y)) -> x a(t, p(x, y)) -> y The (relative) TRS S consists of the following rules: encArg(lambda(x_1)) -> lambda(encArg(x_1)) encArg(p(x_1, x_2)) -> p(encArg(x_1), encArg(x_2)) encArg(1) -> 1 encArg(t) -> t encArg(id) -> id encArg(cons_a(x_1, x_2)) -> a(encArg(x_1), encArg(x_2)) encode_a(x_1, x_2) -> a(encArg(x_1), encArg(x_2)) encode_lambda(x_1) -> lambda(encArg(x_1)) encode_p(x_1, x_2) -> p(encArg(x_1), encArg(x_2)) encode_1 -> 1 encode_t -> t encode_id -> id Rewrite Strategy: INNERMOST