/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 190 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (8) CdtProblem (9) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (12) CdtProblem (13) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CdtProblem (15) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 67 ms] (16) CdtProblem (17) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (18) BOUNDS(1, 1) (19) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CpxRelTRS (21) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (22) typed CpxTrs (23) OrderProof [LOWER BOUND(ID), 0 ms] (24) typed CpxTrs (25) RewriteLemmaProof [LOWER BOUND(ID), 315 ms] (26) proven lower bound (27) LowerBoundPropagationProof [FINISHED, 0 ms] (28) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: a(lambda(x), y) -> lambda(a(x, 1)) a(lambda(x), y) -> lambda(a(x, a(y, t))) a(a(x, y), z) -> a(x, a(y, z)) lambda(x) -> x a(x, y) -> x a(x, y) -> y S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(1) -> 1 encArg(t) -> t encArg(cons_a(x_1, x_2)) -> a(encArg(x_1), encArg(x_2)) encArg(cons_lambda(x_1)) -> lambda(encArg(x_1)) encode_a(x_1, x_2) -> a(encArg(x_1), encArg(x_2)) encode_lambda(x_1) -> lambda(encArg(x_1)) encode_1 -> 1 encode_t -> t ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: a(lambda(x), y) -> lambda(a(x, 1)) a(lambda(x), y) -> lambda(a(x, a(y, t))) a(a(x, y), z) -> a(x, a(y, z)) lambda(x) -> x a(x, y) -> x a(x, y) -> y The (relative) TRS S consists of the following rules: encArg(1) -> 1 encArg(t) -> t encArg(cons_a(x_1, x_2)) -> a(encArg(x_1), encArg(x_2)) encArg(cons_lambda(x_1)) -> lambda(encArg(x_1)) encode_a(x_1, x_2) -> a(encArg(x_1), encArg(x_2)) encode_lambda(x_1) -> lambda(encArg(x_1)) encode_1 -> 1 encode_t -> t Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: a(lambda(x), y) -> lambda(a(x, 1)) a(lambda(x), y) -> lambda(a(x, a(y, t))) a(a(x, y), z) -> a(x, a(y, z)) lambda(x) -> x a(x, y) -> x a(x, y) -> y The (relative) TRS S consists of the following rules: encArg(1) -> 1 encArg(t) -> t encArg(cons_a(x_1, x_2)) -> a(encArg(x_1), encArg(x_2)) encArg(cons_lambda(x_1)) -> lambda(encArg(x_1)) encode_a(x_1, x_2) -> a(encArg(x_1), encArg(x_2)) encode_lambda(x_1) -> lambda(encArg(x_1)) encode_1 -> 1 encode_t -> t Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(1) -> 1 encArg(t) -> t encArg(cons_a(z0, z1)) -> a(encArg(z0), encArg(z1)) encArg(cons_lambda(z0)) -> lambda(encArg(z0)) encode_a(z0, z1) -> a(encArg(z0), encArg(z1)) encode_lambda(z0) -> lambda(encArg(z0)) encode_1 -> 1 encode_t -> t a(lambda(z0), z1) -> lambda(a(z0, 1)) a(lambda(z0), z1) -> lambda(a(z0, a(z1, t))) a(a(z0, z1), z2) -> a(z0, a(z1, z2)) a(z0, z1) -> z0 a(z0, z1) -> z1 lambda(z0) -> z0 Tuples: ENCARG(1) -> c ENCARG(t) -> c1 ENCARG(cons_a(z0, z1)) -> c2(A(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_lambda(z0)) -> c3(LAMBDA(encArg(z0)), ENCARG(z0)) ENCODE_A(z0, z1) -> c4(A(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_LAMBDA(z0) -> c5(LAMBDA(encArg(z0)), ENCARG(z0)) ENCODE_1 -> c6 ENCODE_T -> c7 A(lambda(z0), z1) -> c8(LAMBDA(a(z0, 1)), A(z0, 1)) A(lambda(z0), z1) -> c9(LAMBDA(a(z0, a(z1, t))), A(z0, a(z1, t)), A(z1, t)) A(a(z0, z1), z2) -> c10(A(z0, a(z1, z2)), A(z1, z2)) A(z0, z1) -> c11 A(z0, z1) -> c12 LAMBDA(z0) -> c13 S tuples: A(lambda(z0), z1) -> c8(LAMBDA(a(z0, 1)), A(z0, 1)) A(lambda(z0), z1) -> c9(LAMBDA(a(z0, a(z1, t))), A(z0, a(z1, t)), A(z1, t)) A(a(z0, z1), z2) -> c10(A(z0, a(z1, z2)), A(z1, z2)) A(z0, z1) -> c11 A(z0, z1) -> c12 LAMBDA(z0) -> c13 K tuples:none Defined Rule Symbols: a_2, lambda_1, encArg_1, encode_a_2, encode_lambda_1, encode_1, encode_t Defined Pair Symbols: ENCARG_1, ENCODE_A_2, ENCODE_LAMBDA_1, ENCODE_1, ENCODE_T, A_2, LAMBDA_1 Compound Symbols: c, c1, c2_3, c3_2, c4_3, c5_2, c6, c7, c8_2, c9_3, c10_2, c11, c12, c13 ---------------------------------------- (7) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 3 leading nodes: A(lambda(z0), z1) -> c8(LAMBDA(a(z0, 1)), A(z0, 1)) A(lambda(z0), z1) -> c9(LAMBDA(a(z0, a(z1, t))), A(z0, a(z1, t)), A(z1, t)) A(a(z0, z1), z2) -> c10(A(z0, a(z1, z2)), A(z1, z2)) Removed 4 trailing nodes: ENCODE_1 -> c6 ENCARG(t) -> c1 ENCARG(1) -> c ENCODE_T -> c7 ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(1) -> 1 encArg(t) -> t encArg(cons_a(z0, z1)) -> a(encArg(z0), encArg(z1)) encArg(cons_lambda(z0)) -> lambda(encArg(z0)) encode_a(z0, z1) -> a(encArg(z0), encArg(z1)) encode_lambda(z0) -> lambda(encArg(z0)) encode_1 -> 1 encode_t -> t a(lambda(z0), z1) -> lambda(a(z0, 1)) a(lambda(z0), z1) -> lambda(a(z0, a(z1, t))) a(a(z0, z1), z2) -> a(z0, a(z1, z2)) a(z0, z1) -> z0 a(z0, z1) -> z1 lambda(z0) -> z0 Tuples: ENCARG(cons_a(z0, z1)) -> c2(A(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_lambda(z0)) -> c3(LAMBDA(encArg(z0)), ENCARG(z0)) ENCODE_A(z0, z1) -> c4(A(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_LAMBDA(z0) -> c5(LAMBDA(encArg(z0)), ENCARG(z0)) A(z0, z1) -> c11 A(z0, z1) -> c12 LAMBDA(z0) -> c13 S tuples: A(z0, z1) -> c11 A(z0, z1) -> c12 LAMBDA(z0) -> c13 K tuples:none Defined Rule Symbols: a_2, lambda_1, encArg_1, encode_a_2, encode_lambda_1, encode_1, encode_t Defined Pair Symbols: ENCARG_1, ENCODE_A_2, ENCODE_LAMBDA_1, A_2, LAMBDA_1 Compound Symbols: c2_3, c3_2, c4_3, c5_2, c11, c12, c13 ---------------------------------------- (9) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(1) -> 1 encArg(t) -> t encArg(cons_a(z0, z1)) -> a(encArg(z0), encArg(z1)) encArg(cons_lambda(z0)) -> lambda(encArg(z0)) encode_a(z0, z1) -> a(encArg(z0), encArg(z1)) encode_lambda(z0) -> lambda(encArg(z0)) encode_1 -> 1 encode_t -> t a(lambda(z0), z1) -> lambda(a(z0, 1)) a(lambda(z0), z1) -> lambda(a(z0, a(z1, t))) a(a(z0, z1), z2) -> a(z0, a(z1, z2)) a(z0, z1) -> z0 a(z0, z1) -> z1 lambda(z0) -> z0 Tuples: ENCARG(cons_a(z0, z1)) -> c2(A(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_lambda(z0)) -> c3(LAMBDA(encArg(z0)), ENCARG(z0)) A(z0, z1) -> c11 A(z0, z1) -> c12 LAMBDA(z0) -> c13 ENCODE_A(z0, z1) -> c(A(encArg(z0), encArg(z1))) ENCODE_A(z0, z1) -> c(ENCARG(z0)) ENCODE_A(z0, z1) -> c(ENCARG(z1)) ENCODE_LAMBDA(z0) -> c(LAMBDA(encArg(z0))) ENCODE_LAMBDA(z0) -> c(ENCARG(z0)) S tuples: A(z0, z1) -> c11 A(z0, z1) -> c12 LAMBDA(z0) -> c13 K tuples:none Defined Rule Symbols: a_2, lambda_1, encArg_1, encode_a_2, encode_lambda_1, encode_1, encode_t Defined Pair Symbols: ENCARG_1, A_2, LAMBDA_1, ENCODE_A_2, ENCODE_LAMBDA_1 Compound Symbols: c2_3, c3_2, c11, c12, c13, c_1 ---------------------------------------- (11) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 3 leading nodes: ENCODE_A(z0, z1) -> c(ENCARG(z0)) ENCODE_A(z0, z1) -> c(ENCARG(z1)) ENCODE_LAMBDA(z0) -> c(ENCARG(z0)) ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(1) -> 1 encArg(t) -> t encArg(cons_a(z0, z1)) -> a(encArg(z0), encArg(z1)) encArg(cons_lambda(z0)) -> lambda(encArg(z0)) encode_a(z0, z1) -> a(encArg(z0), encArg(z1)) encode_lambda(z0) -> lambda(encArg(z0)) encode_1 -> 1 encode_t -> t a(lambda(z0), z1) -> lambda(a(z0, 1)) a(lambda(z0), z1) -> lambda(a(z0, a(z1, t))) a(a(z0, z1), z2) -> a(z0, a(z1, z2)) a(z0, z1) -> z0 a(z0, z1) -> z1 lambda(z0) -> z0 Tuples: ENCARG(cons_a(z0, z1)) -> c2(A(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_lambda(z0)) -> c3(LAMBDA(encArg(z0)), ENCARG(z0)) A(z0, z1) -> c11 A(z0, z1) -> c12 LAMBDA(z0) -> c13 ENCODE_A(z0, z1) -> c(A(encArg(z0), encArg(z1))) ENCODE_LAMBDA(z0) -> c(LAMBDA(encArg(z0))) S tuples: A(z0, z1) -> c11 A(z0, z1) -> c12 LAMBDA(z0) -> c13 K tuples:none Defined Rule Symbols: a_2, lambda_1, encArg_1, encode_a_2, encode_lambda_1, encode_1, encode_t Defined Pair Symbols: ENCARG_1, A_2, LAMBDA_1, ENCODE_A_2, ENCODE_LAMBDA_1 Compound Symbols: c2_3, c3_2, c11, c12, c13, c_1 ---------------------------------------- (13) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_a(z0, z1) -> a(encArg(z0), encArg(z1)) encode_lambda(z0) -> lambda(encArg(z0)) encode_1 -> 1 encode_t -> t a(lambda(z0), z1) -> lambda(a(z0, 1)) a(lambda(z0), z1) -> lambda(a(z0, a(z1, t))) a(a(z0, z1), z2) -> a(z0, a(z1, z2)) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(1) -> 1 encArg(t) -> t encArg(cons_a(z0, z1)) -> a(encArg(z0), encArg(z1)) encArg(cons_lambda(z0)) -> lambda(encArg(z0)) a(z0, z1) -> z0 a(z0, z1) -> z1 lambda(z0) -> z0 Tuples: ENCARG(cons_a(z0, z1)) -> c2(A(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_lambda(z0)) -> c3(LAMBDA(encArg(z0)), ENCARG(z0)) A(z0, z1) -> c11 A(z0, z1) -> c12 LAMBDA(z0) -> c13 ENCODE_A(z0, z1) -> c(A(encArg(z0), encArg(z1))) ENCODE_LAMBDA(z0) -> c(LAMBDA(encArg(z0))) S tuples: A(z0, z1) -> c11 A(z0, z1) -> c12 LAMBDA(z0) -> c13 K tuples:none Defined Rule Symbols: encArg_1, a_2, lambda_1 Defined Pair Symbols: ENCARG_1, A_2, LAMBDA_1, ENCODE_A_2, ENCODE_LAMBDA_1 Compound Symbols: c2_3, c3_2, c11, c12, c13, c_1 ---------------------------------------- (15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. A(z0, z1) -> c11 A(z0, z1) -> c12 LAMBDA(z0) -> c13 We considered the (Usable) Rules:none And the Tuples: ENCARG(cons_a(z0, z1)) -> c2(A(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_lambda(z0)) -> c3(LAMBDA(encArg(z0)), ENCARG(z0)) A(z0, z1) -> c11 A(z0, z1) -> c12 LAMBDA(z0) -> c13 ENCODE_A(z0, z1) -> c(A(encArg(z0), encArg(z1))) ENCODE_LAMBDA(z0) -> c(LAMBDA(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(1) = [1] POL(A(x_1, x_2)) = [1] POL(ENCARG(x_1)) = x_1 POL(ENCODE_A(x_1, x_2)) = [1] + x_2 POL(ENCODE_LAMBDA(x_1)) = [1] POL(LAMBDA(x_1)) = [1] POL(a(x_1, x_2)) = x_1 + x_2 POL(c(x_1)) = x_1 POL(c11) = 0 POL(c12) = 0 POL(c13) = 0 POL(c2(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c3(x_1, x_2)) = x_1 + x_2 POL(cons_a(x_1, x_2)) = [1] + x_1 + x_2 POL(cons_lambda(x_1)) = [1] + x_1 POL(encArg(x_1)) = [1] + x_1 POL(lambda(x_1)) = x_1 POL(t) = [1] ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(1) -> 1 encArg(t) -> t encArg(cons_a(z0, z1)) -> a(encArg(z0), encArg(z1)) encArg(cons_lambda(z0)) -> lambda(encArg(z0)) a(z0, z1) -> z0 a(z0, z1) -> z1 lambda(z0) -> z0 Tuples: ENCARG(cons_a(z0, z1)) -> c2(A(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_lambda(z0)) -> c3(LAMBDA(encArg(z0)), ENCARG(z0)) A(z0, z1) -> c11 A(z0, z1) -> c12 LAMBDA(z0) -> c13 ENCODE_A(z0, z1) -> c(A(encArg(z0), encArg(z1))) ENCODE_LAMBDA(z0) -> c(LAMBDA(encArg(z0))) S tuples:none K tuples: A(z0, z1) -> c11 A(z0, z1) -> c12 LAMBDA(z0) -> c13 Defined Rule Symbols: encArg_1, a_2, lambda_1 Defined Pair Symbols: ENCARG_1, A_2, LAMBDA_1, ENCODE_A_2, ENCODE_LAMBDA_1 Compound Symbols: c2_3, c3_2, c11, c12, c13, c_1 ---------------------------------------- (17) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (18) BOUNDS(1, 1) ---------------------------------------- (19) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (20) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a(lambda(x), y) -> lambda(a(x, 1')) a(lambda(x), y) -> lambda(a(x, a(y, t))) a(a(x, y), z) -> a(x, a(y, z)) lambda(x) -> x a(x, y) -> x a(x, y) -> y The (relative) TRS S consists of the following rules: encArg(1') -> 1' encArg(t) -> t encArg(cons_a(x_1, x_2)) -> a(encArg(x_1), encArg(x_2)) encArg(cons_lambda(x_1)) -> lambda(encArg(x_1)) encode_a(x_1, x_2) -> a(encArg(x_1), encArg(x_2)) encode_lambda(x_1) -> lambda(encArg(x_1)) encode_1 -> 1' encode_t -> t Rewrite Strategy: INNERMOST ---------------------------------------- (21) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (22) Obligation: Innermost TRS: Rules: a(lambda(x), y) -> lambda(a(x, 1')) a(lambda(x), y) -> lambda(a(x, a(y, t))) a(a(x, y), z) -> a(x, a(y, z)) lambda(x) -> x a(x, y) -> x a(x, y) -> y encArg(1') -> 1' encArg(t) -> t encArg(cons_a(x_1, x_2)) -> a(encArg(x_1), encArg(x_2)) encArg(cons_lambda(x_1)) -> lambda(encArg(x_1)) encode_a(x_1, x_2) -> a(encArg(x_1), encArg(x_2)) encode_lambda(x_1) -> lambda(encArg(x_1)) encode_1 -> 1' encode_t -> t Types: a :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda lambda :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda 1' :: 1':t:cons_a:cons_lambda t :: 1':t:cons_a:cons_lambda encArg :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda cons_a :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda cons_lambda :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda encode_a :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda encode_lambda :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda encode_1 :: 1':t:cons_a:cons_lambda encode_t :: 1':t:cons_a:cons_lambda hole_1':t:cons_a:cons_lambda1_0 :: 1':t:cons_a:cons_lambda gen_1':t:cons_a:cons_lambda2_0 :: Nat -> 1':t:cons_a:cons_lambda ---------------------------------------- (23) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: a, encArg They will be analysed ascendingly in the following order: a < encArg ---------------------------------------- (24) Obligation: Innermost TRS: Rules: a(lambda(x), y) -> lambda(a(x, 1')) a(lambda(x), y) -> lambda(a(x, a(y, t))) a(a(x, y), z) -> a(x, a(y, z)) lambda(x) -> x a(x, y) -> x a(x, y) -> y encArg(1') -> 1' encArg(t) -> t encArg(cons_a(x_1, x_2)) -> a(encArg(x_1), encArg(x_2)) encArg(cons_lambda(x_1)) -> lambda(encArg(x_1)) encode_a(x_1, x_2) -> a(encArg(x_1), encArg(x_2)) encode_lambda(x_1) -> lambda(encArg(x_1)) encode_1 -> 1' encode_t -> t Types: a :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda lambda :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda 1' :: 1':t:cons_a:cons_lambda t :: 1':t:cons_a:cons_lambda encArg :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda cons_a :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda cons_lambda :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda encode_a :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda encode_lambda :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda encode_1 :: 1':t:cons_a:cons_lambda encode_t :: 1':t:cons_a:cons_lambda hole_1':t:cons_a:cons_lambda1_0 :: 1':t:cons_a:cons_lambda gen_1':t:cons_a:cons_lambda2_0 :: Nat -> 1':t:cons_a:cons_lambda Generator Equations: gen_1':t:cons_a:cons_lambda2_0(0) <=> 1' gen_1':t:cons_a:cons_lambda2_0(+(x, 1)) <=> cons_a(1', gen_1':t:cons_a:cons_lambda2_0(x)) The following defined symbols remain to be analysed: a, encArg They will be analysed ascendingly in the following order: a < encArg ---------------------------------------- (25) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_1':t:cons_a:cons_lambda2_0(n50_0)) -> gen_1':t:cons_a:cons_lambda2_0(0), rt in Omega(n50_0) Induction Base: encArg(gen_1':t:cons_a:cons_lambda2_0(0)) ->_R^Omega(0) 1' Induction Step: encArg(gen_1':t:cons_a:cons_lambda2_0(+(n50_0, 1))) ->_R^Omega(0) a(encArg(1'), encArg(gen_1':t:cons_a:cons_lambda2_0(n50_0))) ->_R^Omega(0) a(1', encArg(gen_1':t:cons_a:cons_lambda2_0(n50_0))) ->_IH a(1', gen_1':t:cons_a:cons_lambda2_0(0)) ->_R^Omega(1) 1' We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (26) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: a(lambda(x), y) -> lambda(a(x, 1')) a(lambda(x), y) -> lambda(a(x, a(y, t))) a(a(x, y), z) -> a(x, a(y, z)) lambda(x) -> x a(x, y) -> x a(x, y) -> y encArg(1') -> 1' encArg(t) -> t encArg(cons_a(x_1, x_2)) -> a(encArg(x_1), encArg(x_2)) encArg(cons_lambda(x_1)) -> lambda(encArg(x_1)) encode_a(x_1, x_2) -> a(encArg(x_1), encArg(x_2)) encode_lambda(x_1) -> lambda(encArg(x_1)) encode_1 -> 1' encode_t -> t Types: a :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda lambda :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda 1' :: 1':t:cons_a:cons_lambda t :: 1':t:cons_a:cons_lambda encArg :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda cons_a :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda cons_lambda :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda encode_a :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda encode_lambda :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda encode_1 :: 1':t:cons_a:cons_lambda encode_t :: 1':t:cons_a:cons_lambda hole_1':t:cons_a:cons_lambda1_0 :: 1':t:cons_a:cons_lambda gen_1':t:cons_a:cons_lambda2_0 :: Nat -> 1':t:cons_a:cons_lambda Generator Equations: gen_1':t:cons_a:cons_lambda2_0(0) <=> 1' gen_1':t:cons_a:cons_lambda2_0(+(x, 1)) <=> cons_a(1', gen_1':t:cons_a:cons_lambda2_0(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (27) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (28) BOUNDS(n^1, INF)