/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 183 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (8) CdtProblem (9) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CdtProblem (13) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (14) CdtProblem (15) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CdtProblem (17) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 67 ms] (18) CdtProblem (19) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 37 ms] (20) CdtProblem (21) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (22) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: s(s(0)) -> f(0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(s(0)))))) g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0 encode_f(x_1) -> f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: s(s(0)) -> f(0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(s(0)))))) g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0 encode_f(x_1) -> f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: s(s(0)) -> f(0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(s(0)))))) g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_h(x_1, x_2)) -> h(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0 encode_f(x_1) -> f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_h(x_1, x_2) -> h(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(cons_s(z0)) -> s(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_h(z0, z1)) -> h(encArg(z0), encArg(z1)) encode_s(z0) -> s(encArg(z0)) encode_0 -> 0 encode_f(z0) -> f(encArg(z0)) encode_g(z0) -> g(encArg(z0)) encode_h(z0, z1) -> h(encArg(z0), encArg(z1)) s(s(0)) -> f(0) s(s(s(0))) -> f(s(0)) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) s(z0) -> h(z0, 0) s(z0) -> h(0, z0) f(0) -> 0 f(s(0)) -> s(0) f(s(s(0))) -> s(s(s(s(s(s(0)))))) f(g(z0)) -> g(g(f(z0))) g(z0) -> h(z0, z0) g(s(z0)) -> s(s(g(z0))) h(f(z0), g(z0)) -> f(s(z0)) Tuples: ENCARG(0) -> c ENCARG(cons_s(z0)) -> c1(S(encArg(z0)), ENCARG(z0)) ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_h(z0, z1)) -> c4(H(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_S(z0) -> c5(S(encArg(z0)), ENCARG(z0)) ENCODE_0 -> c6 ENCODE_F(z0) -> c7(F(encArg(z0)), ENCARG(z0)) ENCODE_G(z0) -> c8(G(encArg(z0)), ENCARG(z0)) ENCODE_H(z0, z1) -> c9(H(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) S(s(0)) -> c10(F(0)) S(s(s(0))) -> c11(F(s(0)), S(0)) S(s(s(s(s(s(s(s(0)))))))) -> c12(F(s(s(0))), S(s(0)), S(0)) S(z0) -> c13(H(z0, 0)) S(z0) -> c14(H(0, z0)) F(0) -> c15 F(s(0)) -> c16(S(0)) F(s(s(0))) -> c17(S(s(s(s(s(s(0)))))), S(s(s(s(s(0))))), S(s(s(s(0)))), S(s(s(0))), S(s(0)), S(0)) F(g(z0)) -> c18(G(g(f(z0))), G(f(z0)), F(z0)) G(z0) -> c19(H(z0, z0)) G(s(z0)) -> c20(S(s(g(z0))), S(g(z0)), G(z0)) H(f(z0), g(z0)) -> c21(F(s(z0)), S(z0)) S tuples: S(s(0)) -> c10(F(0)) S(s(s(0))) -> c11(F(s(0)), S(0)) S(s(s(s(s(s(s(s(0)))))))) -> c12(F(s(s(0))), S(s(0)), S(0)) S(z0) -> c13(H(z0, 0)) S(z0) -> c14(H(0, z0)) F(0) -> c15 F(s(0)) -> c16(S(0)) F(s(s(0))) -> c17(S(s(s(s(s(s(0)))))), S(s(s(s(s(0))))), S(s(s(s(0)))), S(s(s(0))), S(s(0)), S(0)) F(g(z0)) -> c18(G(g(f(z0))), G(f(z0)), F(z0)) G(z0) -> c19(H(z0, z0)) G(s(z0)) -> c20(S(s(g(z0))), S(g(z0)), G(z0)) H(f(z0), g(z0)) -> c21(F(s(z0)), S(z0)) K tuples:none Defined Rule Symbols: s_1, f_1, g_1, h_2, encArg_1, encode_s_1, encode_0, encode_f_1, encode_g_1, encode_h_2 Defined Pair Symbols: ENCARG_1, ENCODE_S_1, ENCODE_0, ENCODE_F_1, ENCODE_G_1, ENCODE_H_2, S_1, F_1, G_1, H_2 Compound Symbols: c, c1_2, c2_2, c3_2, c4_3, c5_2, c6, c7_2, c8_2, c9_3, c10_1, c11_2, c12_3, c13_1, c14_1, c15, c16_1, c17_6, c18_3, c19_1, c20_3, c21_2 ---------------------------------------- (7) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 8 leading nodes: S(s(0)) -> c10(F(0)) S(s(s(0))) -> c11(F(s(0)), S(0)) S(s(s(s(s(s(s(s(0)))))))) -> c12(F(s(s(0))), S(s(0)), S(0)) F(s(0)) -> c16(S(0)) F(s(s(0))) -> c17(S(s(s(s(s(s(0)))))), S(s(s(s(s(0))))), S(s(s(s(0)))), S(s(s(0))), S(s(0)), S(0)) H(f(z0), g(z0)) -> c21(F(s(z0)), S(z0)) F(g(z0)) -> c18(G(g(f(z0))), G(f(z0)), F(z0)) G(s(z0)) -> c20(S(s(g(z0))), S(g(z0)), G(z0)) Removed 2 trailing nodes: ENCARG(0) -> c ENCODE_0 -> c6 ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(cons_s(z0)) -> s(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_h(z0, z1)) -> h(encArg(z0), encArg(z1)) encode_s(z0) -> s(encArg(z0)) encode_0 -> 0 encode_f(z0) -> f(encArg(z0)) encode_g(z0) -> g(encArg(z0)) encode_h(z0, z1) -> h(encArg(z0), encArg(z1)) s(s(0)) -> f(0) s(s(s(0))) -> f(s(0)) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) s(z0) -> h(z0, 0) s(z0) -> h(0, z0) f(0) -> 0 f(s(0)) -> s(0) f(s(s(0))) -> s(s(s(s(s(s(0)))))) f(g(z0)) -> g(g(f(z0))) g(z0) -> h(z0, z0) g(s(z0)) -> s(s(g(z0))) h(f(z0), g(z0)) -> f(s(z0)) Tuples: ENCARG(cons_s(z0)) -> c1(S(encArg(z0)), ENCARG(z0)) ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) ENCARG(cons_h(z0, z1)) -> c4(H(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_S(z0) -> c5(S(encArg(z0)), ENCARG(z0)) ENCODE_F(z0) -> c7(F(encArg(z0)), ENCARG(z0)) ENCODE_G(z0) -> c8(G(encArg(z0)), ENCARG(z0)) ENCODE_H(z0, z1) -> c9(H(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) S(z0) -> c13(H(z0, 0)) S(z0) -> c14(H(0, z0)) F(0) -> c15 G(z0) -> c19(H(z0, z0)) S tuples: S(z0) -> c13(H(z0, 0)) S(z0) -> c14(H(0, z0)) F(0) -> c15 G(z0) -> c19(H(z0, z0)) K tuples:none Defined Rule Symbols: s_1, f_1, g_1, h_2, encArg_1, encode_s_1, encode_0, encode_f_1, encode_g_1, encode_h_2 Defined Pair Symbols: ENCARG_1, ENCODE_S_1, ENCODE_F_1, ENCODE_G_1, ENCODE_H_2, S_1, F_1, G_1 Compound Symbols: c1_2, c2_2, c3_2, c4_3, c5_2, c7_2, c8_2, c9_3, c13_1, c14_1, c15, c19_1 ---------------------------------------- (9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 5 trailing tuple parts ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(cons_s(z0)) -> s(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_h(z0, z1)) -> h(encArg(z0), encArg(z1)) encode_s(z0) -> s(encArg(z0)) encode_0 -> 0 encode_f(z0) -> f(encArg(z0)) encode_g(z0) -> g(encArg(z0)) encode_h(z0, z1) -> h(encArg(z0), encArg(z1)) s(s(0)) -> f(0) s(s(s(0))) -> f(s(0)) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) s(z0) -> h(z0, 0) s(z0) -> h(0, z0) f(0) -> 0 f(s(0)) -> s(0) f(s(s(0))) -> s(s(s(s(s(s(0)))))) f(g(z0)) -> g(g(f(z0))) g(z0) -> h(z0, z0) g(s(z0)) -> s(s(g(z0))) h(f(z0), g(z0)) -> f(s(z0)) Tuples: ENCARG(cons_s(z0)) -> c1(S(encArg(z0)), ENCARG(z0)) ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) ENCODE_S(z0) -> c5(S(encArg(z0)), ENCARG(z0)) ENCODE_F(z0) -> c7(F(encArg(z0)), ENCARG(z0)) ENCODE_G(z0) -> c8(G(encArg(z0)), ENCARG(z0)) F(0) -> c15 ENCARG(cons_h(z0, z1)) -> c4(ENCARG(z0), ENCARG(z1)) ENCODE_H(z0, z1) -> c9(ENCARG(z0), ENCARG(z1)) S(z0) -> c13 S(z0) -> c14 G(z0) -> c19 S tuples: F(0) -> c15 S(z0) -> c13 S(z0) -> c14 G(z0) -> c19 K tuples:none Defined Rule Symbols: s_1, f_1, g_1, h_2, encArg_1, encode_s_1, encode_0, encode_f_1, encode_g_1, encode_h_2 Defined Pair Symbols: ENCARG_1, ENCODE_S_1, ENCODE_F_1, ENCODE_G_1, F_1, ENCODE_H_2, S_1, G_1 Compound Symbols: c1_2, c2_2, c3_2, c5_2, c7_2, c8_2, c15, c4_2, c9_2, c13, c14, c19 ---------------------------------------- (11) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(cons_s(z0)) -> s(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_h(z0, z1)) -> h(encArg(z0), encArg(z1)) encode_s(z0) -> s(encArg(z0)) encode_0 -> 0 encode_f(z0) -> f(encArg(z0)) encode_g(z0) -> g(encArg(z0)) encode_h(z0, z1) -> h(encArg(z0), encArg(z1)) s(s(0)) -> f(0) s(s(s(0))) -> f(s(0)) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) s(z0) -> h(z0, 0) s(z0) -> h(0, z0) f(0) -> 0 f(s(0)) -> s(0) f(s(s(0))) -> s(s(s(s(s(s(0)))))) f(g(z0)) -> g(g(f(z0))) g(z0) -> h(z0, z0) g(s(z0)) -> s(s(g(z0))) h(f(z0), g(z0)) -> f(s(z0)) Tuples: ENCARG(cons_s(z0)) -> c1(S(encArg(z0)), ENCARG(z0)) ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(0) -> c15 ENCARG(cons_h(z0, z1)) -> c4(ENCARG(z0), ENCARG(z1)) S(z0) -> c13 S(z0) -> c14 G(z0) -> c19 ENCODE_S(z0) -> c(S(encArg(z0))) ENCODE_S(z0) -> c(ENCARG(z0)) ENCODE_F(z0) -> c(F(encArg(z0))) ENCODE_F(z0) -> c(ENCARG(z0)) ENCODE_G(z0) -> c(G(encArg(z0))) ENCODE_G(z0) -> c(ENCARG(z0)) ENCODE_H(z0, z1) -> c(ENCARG(z0)) ENCODE_H(z0, z1) -> c(ENCARG(z1)) S tuples: F(0) -> c15 S(z0) -> c13 S(z0) -> c14 G(z0) -> c19 K tuples:none Defined Rule Symbols: s_1, f_1, g_1, h_2, encArg_1, encode_s_1, encode_0, encode_f_1, encode_g_1, encode_h_2 Defined Pair Symbols: ENCARG_1, F_1, S_1, G_1, ENCODE_S_1, ENCODE_F_1, ENCODE_G_1, ENCODE_H_2 Compound Symbols: c1_2, c2_2, c3_2, c15, c4_2, c13, c14, c19, c_1 ---------------------------------------- (13) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 5 leading nodes: ENCODE_S(z0) -> c(ENCARG(z0)) ENCODE_F(z0) -> c(ENCARG(z0)) ENCODE_G(z0) -> c(ENCARG(z0)) ENCODE_H(z0, z1) -> c(ENCARG(z0)) ENCODE_H(z0, z1) -> c(ENCARG(z1)) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(cons_s(z0)) -> s(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_h(z0, z1)) -> h(encArg(z0), encArg(z1)) encode_s(z0) -> s(encArg(z0)) encode_0 -> 0 encode_f(z0) -> f(encArg(z0)) encode_g(z0) -> g(encArg(z0)) encode_h(z0, z1) -> h(encArg(z0), encArg(z1)) s(s(0)) -> f(0) s(s(s(0))) -> f(s(0)) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) s(z0) -> h(z0, 0) s(z0) -> h(0, z0) f(0) -> 0 f(s(0)) -> s(0) f(s(s(0))) -> s(s(s(s(s(s(0)))))) f(g(z0)) -> g(g(f(z0))) g(z0) -> h(z0, z0) g(s(z0)) -> s(s(g(z0))) h(f(z0), g(z0)) -> f(s(z0)) Tuples: ENCARG(cons_s(z0)) -> c1(S(encArg(z0)), ENCARG(z0)) ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(0) -> c15 ENCARG(cons_h(z0, z1)) -> c4(ENCARG(z0), ENCARG(z1)) S(z0) -> c13 S(z0) -> c14 G(z0) -> c19 ENCODE_S(z0) -> c(S(encArg(z0))) ENCODE_F(z0) -> c(F(encArg(z0))) ENCODE_G(z0) -> c(G(encArg(z0))) S tuples: F(0) -> c15 S(z0) -> c13 S(z0) -> c14 G(z0) -> c19 K tuples:none Defined Rule Symbols: s_1, f_1, g_1, h_2, encArg_1, encode_s_1, encode_0, encode_f_1, encode_g_1, encode_h_2 Defined Pair Symbols: ENCARG_1, F_1, S_1, G_1, ENCODE_S_1, ENCODE_F_1, ENCODE_G_1 Compound Symbols: c1_2, c2_2, c3_2, c15, c4_2, c13, c14, c19, c_1 ---------------------------------------- (15) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_s(z0) -> s(encArg(z0)) encode_0 -> 0 encode_f(z0) -> f(encArg(z0)) encode_g(z0) -> g(encArg(z0)) encode_h(z0, z1) -> h(encArg(z0), encArg(z1)) s(s(0)) -> f(0) s(s(s(0))) -> f(s(0)) s(s(s(s(s(s(s(s(0)))))))) -> f(s(s(0))) f(s(0)) -> s(0) f(s(s(0))) -> s(s(s(s(s(s(0)))))) f(g(z0)) -> g(g(f(z0))) g(s(z0)) -> s(s(g(z0))) h(f(z0), g(z0)) -> f(s(z0)) ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(cons_s(z0)) -> s(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_h(z0, z1)) -> h(encArg(z0), encArg(z1)) s(z0) -> h(z0, 0) s(z0) -> h(0, z0) f(0) -> 0 g(z0) -> h(z0, z0) Tuples: ENCARG(cons_s(z0)) -> c1(S(encArg(z0)), ENCARG(z0)) ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(0) -> c15 ENCARG(cons_h(z0, z1)) -> c4(ENCARG(z0), ENCARG(z1)) S(z0) -> c13 S(z0) -> c14 G(z0) -> c19 ENCODE_S(z0) -> c(S(encArg(z0))) ENCODE_F(z0) -> c(F(encArg(z0))) ENCODE_G(z0) -> c(G(encArg(z0))) S tuples: F(0) -> c15 S(z0) -> c13 S(z0) -> c14 G(z0) -> c19 K tuples:none Defined Rule Symbols: encArg_1, s_1, f_1, g_1 Defined Pair Symbols: ENCARG_1, F_1, S_1, G_1, ENCODE_S_1, ENCODE_F_1, ENCODE_G_1 Compound Symbols: c1_2, c2_2, c3_2, c15, c4_2, c13, c14, c19, c_1 ---------------------------------------- (17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(0) -> c15 We considered the (Usable) Rules:none And the Tuples: ENCARG(cons_s(z0)) -> c1(S(encArg(z0)), ENCARG(z0)) ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(0) -> c15 ENCARG(cons_h(z0, z1)) -> c4(ENCARG(z0), ENCARG(z1)) S(z0) -> c13 S(z0) -> c14 G(z0) -> c19 ENCODE_S(z0) -> c(S(encArg(z0))) ENCODE_F(z0) -> c(F(encArg(z0))) ENCODE_G(z0) -> c(G(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = 0 POL(ENCARG(x_1)) = x_1 POL(ENCODE_F(x_1)) = [1] POL(ENCODE_G(x_1)) = 0 POL(ENCODE_S(x_1)) = [3] + x_1 POL(F(x_1)) = [1] POL(G(x_1)) = 0 POL(S(x_1)) = 0 POL(c(x_1)) = x_1 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c13) = 0 POL(c14) = 0 POL(c15) = 0 POL(c19) = 0 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c4(x_1, x_2)) = x_1 + x_2 POL(cons_f(x_1)) = [1] + x_1 POL(cons_g(x_1)) = x_1 POL(cons_h(x_1, x_2)) = x_1 + x_2 POL(cons_s(x_1)) = x_1 POL(encArg(x_1)) = [2]x_1 POL(f(x_1)) = 0 POL(g(x_1)) = x_1 POL(h(x_1, x_2)) = 0 POL(s(x_1)) = x_1 ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(cons_s(z0)) -> s(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_h(z0, z1)) -> h(encArg(z0), encArg(z1)) s(z0) -> h(z0, 0) s(z0) -> h(0, z0) f(0) -> 0 g(z0) -> h(z0, z0) Tuples: ENCARG(cons_s(z0)) -> c1(S(encArg(z0)), ENCARG(z0)) ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(0) -> c15 ENCARG(cons_h(z0, z1)) -> c4(ENCARG(z0), ENCARG(z1)) S(z0) -> c13 S(z0) -> c14 G(z0) -> c19 ENCODE_S(z0) -> c(S(encArg(z0))) ENCODE_F(z0) -> c(F(encArg(z0))) ENCODE_G(z0) -> c(G(encArg(z0))) S tuples: S(z0) -> c13 S(z0) -> c14 G(z0) -> c19 K tuples: F(0) -> c15 Defined Rule Symbols: encArg_1, s_1, f_1, g_1 Defined Pair Symbols: ENCARG_1, F_1, S_1, G_1, ENCODE_S_1, ENCODE_F_1, ENCODE_G_1 Compound Symbols: c1_2, c2_2, c3_2, c15, c4_2, c13, c14, c19, c_1 ---------------------------------------- (19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. S(z0) -> c13 S(z0) -> c14 G(z0) -> c19 We considered the (Usable) Rules:none And the Tuples: ENCARG(cons_s(z0)) -> c1(S(encArg(z0)), ENCARG(z0)) ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(0) -> c15 ENCARG(cons_h(z0, z1)) -> c4(ENCARG(z0), ENCARG(z1)) S(z0) -> c13 S(z0) -> c14 G(z0) -> c19 ENCODE_S(z0) -> c(S(encArg(z0))) ENCODE_F(z0) -> c(F(encArg(z0))) ENCODE_G(z0) -> c(G(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = 0 POL(ENCARG(x_1)) = [1] + x_1 POL(ENCODE_F(x_1)) = x_1 POL(ENCODE_G(x_1)) = [1] POL(ENCODE_S(x_1)) = [1] + x_1 POL(F(x_1)) = 0 POL(G(x_1)) = [1] POL(S(x_1)) = [1] POL(c(x_1)) = x_1 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c13) = 0 POL(c14) = 0 POL(c15) = 0 POL(c19) = 0 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c4(x_1, x_2)) = x_1 + x_2 POL(cons_f(x_1)) = x_1 POL(cons_g(x_1)) = [1] + x_1 POL(cons_h(x_1, x_2)) = [1] + x_1 + x_2 POL(cons_s(x_1)) = [1] + x_1 POL(encArg(x_1)) = [1] + x_1 POL(f(x_1)) = [1] POL(g(x_1)) = [1] + x_1 POL(h(x_1, x_2)) = [1] + x_2 POL(s(x_1)) = [1] + x_1 ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(cons_s(z0)) -> s(encArg(z0)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encArg(cons_h(z0, z1)) -> h(encArg(z0), encArg(z1)) s(z0) -> h(z0, 0) s(z0) -> h(0, z0) f(0) -> 0 g(z0) -> h(z0, z0) Tuples: ENCARG(cons_s(z0)) -> c1(S(encArg(z0)), ENCARG(z0)) ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(0) -> c15 ENCARG(cons_h(z0, z1)) -> c4(ENCARG(z0), ENCARG(z1)) S(z0) -> c13 S(z0) -> c14 G(z0) -> c19 ENCODE_S(z0) -> c(S(encArg(z0))) ENCODE_F(z0) -> c(F(encArg(z0))) ENCODE_G(z0) -> c(G(encArg(z0))) S tuples:none K tuples: F(0) -> c15 S(z0) -> c13 S(z0) -> c14 G(z0) -> c19 Defined Rule Symbols: encArg_1, s_1, f_1, g_1 Defined Pair Symbols: ENCARG_1, F_1, S_1, G_1, ENCODE_S_1, ENCODE_F_1, ENCODE_G_1 Compound Symbols: c1_2, c2_2, c3_2, c15, c4_2, c13, c14, c19, c_1 ---------------------------------------- (21) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (22) BOUNDS(1, 1)