/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 326 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: last(nil) -> 0 last(cons(x, nil)) -> x last(cons(x, cons(y, xs))) -> last(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) reverse(nil) -> nil reverse(cons(x, xs)) -> cons(last(cons(x, xs)), reverse(del(last(cons(x, xs)), cons(x, xs)))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(nil) -> nil encArg(0) -> 0 encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(true) -> true encArg(false) -> false encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_last(x_1)) -> last(encArg(x_1)) encArg(cons_del(x_1, x_2)) -> del(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3, x_4)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_reverse(x_1)) -> reverse(encArg(x_1)) encode_last(x_1) -> last(encArg(x_1)) encode_nil -> nil encode_0 -> 0 encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_del(x_1, x_2) -> del(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3, x_4) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_s(x_1) -> s(encArg(x_1)) encode_reverse(x_1) -> reverse(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: last(nil) -> 0 last(cons(x, nil)) -> x last(cons(x, cons(y, xs))) -> last(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) reverse(nil) -> nil reverse(cons(x, xs)) -> cons(last(cons(x, xs)), reverse(del(last(cons(x, xs)), cons(x, xs)))) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(0) -> 0 encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(true) -> true encArg(false) -> false encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_last(x_1)) -> last(encArg(x_1)) encArg(cons_del(x_1, x_2)) -> del(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3, x_4)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_reverse(x_1)) -> reverse(encArg(x_1)) encode_last(x_1) -> last(encArg(x_1)) encode_nil -> nil encode_0 -> 0 encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_del(x_1, x_2) -> del(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3, x_4) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_s(x_1) -> s(encArg(x_1)) encode_reverse(x_1) -> reverse(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: last(nil) -> 0 last(cons(x, nil)) -> x last(cons(x, cons(y, xs))) -> last(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) reverse(nil) -> nil reverse(cons(x, xs)) -> cons(last(cons(x, xs)), reverse(del(last(cons(x, xs)), cons(x, xs)))) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(0) -> 0 encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(true) -> true encArg(false) -> false encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_last(x_1)) -> last(encArg(x_1)) encArg(cons_del(x_1, x_2)) -> del(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3, x_4)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_reverse(x_1)) -> reverse(encArg(x_1)) encode_last(x_1) -> last(encArg(x_1)) encode_nil -> nil encode_0 -> 0 encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_del(x_1, x_2) -> del(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3, x_4) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_s(x_1) -> s(encArg(x_1)) encode_reverse(x_1) -> reverse(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: last(nil) -> 0 last(cons(x, nil)) -> x last(cons(x, cons(y, xs))) -> last(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) reverse(nil) -> nil reverse(cons(x, xs)) -> cons(last(cons(x, xs)), reverse(del(last(cons(x, xs)), cons(x, xs)))) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(0) -> 0 encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(true) -> true encArg(false) -> false encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_last(x_1)) -> last(encArg(x_1)) encArg(cons_del(x_1, x_2)) -> del(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3, x_4)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_reverse(x_1)) -> reverse(encArg(x_1)) encode_last(x_1) -> last(encArg(x_1)) encode_nil -> nil encode_0 -> 0 encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_del(x_1, x_2) -> del(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3, x_4) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_s(x_1) -> s(encArg(x_1)) encode_reverse(x_1) -> reverse(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence last(cons(x, cons(y, xs))) ->^+ last(cons(y, xs)) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [xs / cons(y, xs)]. The result substitution is [x / y]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: last(nil) -> 0 last(cons(x, nil)) -> x last(cons(x, cons(y, xs))) -> last(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) reverse(nil) -> nil reverse(cons(x, xs)) -> cons(last(cons(x, xs)), reverse(del(last(cons(x, xs)), cons(x, xs)))) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(0) -> 0 encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(true) -> true encArg(false) -> false encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_last(x_1)) -> last(encArg(x_1)) encArg(cons_del(x_1, x_2)) -> del(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3, x_4)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_reverse(x_1)) -> reverse(encArg(x_1)) encode_last(x_1) -> last(encArg(x_1)) encode_nil -> nil encode_0 -> 0 encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_del(x_1, x_2) -> del(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3, x_4) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_s(x_1) -> s(encArg(x_1)) encode_reverse(x_1) -> reverse(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: last(nil) -> 0 last(cons(x, nil)) -> x last(cons(x, cons(y, xs))) -> last(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) reverse(nil) -> nil reverse(cons(x, xs)) -> cons(last(cons(x, xs)), reverse(del(last(cons(x, xs)), cons(x, xs)))) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(0) -> 0 encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(true) -> true encArg(false) -> false encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_last(x_1)) -> last(encArg(x_1)) encArg(cons_del(x_1, x_2)) -> del(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3, x_4)) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_reverse(x_1)) -> reverse(encArg(x_1)) encode_last(x_1) -> last(encArg(x_1)) encode_nil -> nil encode_0 -> 0 encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_del(x_1, x_2) -> del(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3, x_4) -> if(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_s(x_1) -> s(encArg(x_1)) encode_reverse(x_1) -> reverse(encArg(x_1)) Rewrite Strategy: INNERMOST