/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 148 ms] (4) CpxRelTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (8) CdtProblem (9) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CdtProblem (13) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (14) CdtProblem (15) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CdtProblem (17) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 402 ms] (18) CdtProblem (19) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (20) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: p(a(x0), p(a(a(a(x1))), x2)) -> p(a(x2), p(a(a(b(x0))), x2)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(a(x_1)) -> a(encArg(x_1)) encArg(b(x_1)) -> b(encArg(x_1)) encArg(cons_p(x_1, x_2)) -> p(encArg(x_1), encArg(x_2)) encode_p(x_1, x_2) -> p(encArg(x_1), encArg(x_2)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: p(a(x0), p(a(a(a(x1))), x2)) -> p(a(x2), p(a(a(b(x0))), x2)) The (relative) TRS S consists of the following rules: encArg(a(x_1)) -> a(encArg(x_1)) encArg(b(x_1)) -> b(encArg(x_1)) encArg(cons_p(x_1, x_2)) -> p(encArg(x_1), encArg(x_2)) encode_p(x_1, x_2) -> p(encArg(x_1), encArg(x_2)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: p(a(x0), p(a(a(a(x1))), x2)) -> p(a(x2), p(a(a(b(x0))), x2)) The (relative) TRS S consists of the following rules: encArg(a(x_1)) -> a(encArg(x_1)) encArg(b(x_1)) -> b(encArg(x_1)) encArg(cons_p(x_1, x_2)) -> p(encArg(x_1), encArg(x_2)) encode_p(x_1, x_2) -> p(encArg(x_1), encArg(x_2)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: encArg(a(z0)) -> a(encArg(z0)) encArg(b(z0)) -> b(encArg(z0)) encArg(cons_p(z0, z1)) -> p(encArg(z0), encArg(z1)) encode_p(z0, z1) -> p(encArg(z0), encArg(z1)) encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) p(a(z0), p(a(a(a(z1))), z2)) -> p(a(z2), p(a(a(b(z0))), z2)) Tuples: ENCARG(a(z0)) -> c(ENCARG(z0)) ENCARG(b(z0)) -> c1(ENCARG(z0)) ENCARG(cons_p(z0, z1)) -> c2(P(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_P(z0, z1) -> c3(P(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_A(z0) -> c4(ENCARG(z0)) ENCODE_B(z0) -> c5(ENCARG(z0)) P(a(z0), p(a(a(a(z1))), z2)) -> c6(P(a(z2), p(a(a(b(z0))), z2)), P(a(a(b(z0))), z2)) S tuples: P(a(z0), p(a(a(a(z1))), z2)) -> c6(P(a(z2), p(a(a(b(z0))), z2)), P(a(a(b(z0))), z2)) K tuples:none Defined Rule Symbols: p_2, encArg_1, encode_p_2, encode_a_1, encode_b_1 Defined Pair Symbols: ENCARG_1, ENCODE_P_2, ENCODE_A_1, ENCODE_B_1, P_2 Compound Symbols: c_1, c1_1, c2_3, c3_3, c4_1, c5_1, c6_2 ---------------------------------------- (7) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_A(z0) -> c4(ENCARG(z0)) ENCODE_B(z0) -> c5(ENCARG(z0)) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: encArg(a(z0)) -> a(encArg(z0)) encArg(b(z0)) -> b(encArg(z0)) encArg(cons_p(z0, z1)) -> p(encArg(z0), encArg(z1)) encode_p(z0, z1) -> p(encArg(z0), encArg(z1)) encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) p(a(z0), p(a(a(a(z1))), z2)) -> p(a(z2), p(a(a(b(z0))), z2)) Tuples: ENCARG(a(z0)) -> c(ENCARG(z0)) ENCARG(b(z0)) -> c1(ENCARG(z0)) ENCARG(cons_p(z0, z1)) -> c2(P(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_P(z0, z1) -> c3(P(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) P(a(z0), p(a(a(a(z1))), z2)) -> c6(P(a(z2), p(a(a(b(z0))), z2)), P(a(a(b(z0))), z2)) S tuples: P(a(z0), p(a(a(a(z1))), z2)) -> c6(P(a(z2), p(a(a(b(z0))), z2)), P(a(a(b(z0))), z2)) K tuples:none Defined Rule Symbols: p_2, encArg_1, encode_p_2, encode_a_1, encode_b_1 Defined Pair Symbols: ENCARG_1, ENCODE_P_2, P_2 Compound Symbols: c_1, c1_1, c2_3, c3_3, c6_2 ---------------------------------------- (9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(a(z0)) -> a(encArg(z0)) encArg(b(z0)) -> b(encArg(z0)) encArg(cons_p(z0, z1)) -> p(encArg(z0), encArg(z1)) encode_p(z0, z1) -> p(encArg(z0), encArg(z1)) encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) p(a(z0), p(a(a(a(z1))), z2)) -> p(a(z2), p(a(a(b(z0))), z2)) Tuples: ENCARG(a(z0)) -> c(ENCARG(z0)) ENCARG(b(z0)) -> c1(ENCARG(z0)) ENCARG(cons_p(z0, z1)) -> c2(P(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_P(z0, z1) -> c3(P(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) P(a(z0), p(a(a(a(z1))), z2)) -> c6(P(a(a(b(z0))), z2)) S tuples: P(a(z0), p(a(a(a(z1))), z2)) -> c6(P(a(a(b(z0))), z2)) K tuples:none Defined Rule Symbols: p_2, encArg_1, encode_p_2, encode_a_1, encode_b_1 Defined Pair Symbols: ENCARG_1, ENCODE_P_2, P_2 Compound Symbols: c_1, c1_1, c2_3, c3_3, c6_1 ---------------------------------------- (11) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(a(z0)) -> a(encArg(z0)) encArg(b(z0)) -> b(encArg(z0)) encArg(cons_p(z0, z1)) -> p(encArg(z0), encArg(z1)) encode_p(z0, z1) -> p(encArg(z0), encArg(z1)) encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) p(a(z0), p(a(a(a(z1))), z2)) -> p(a(z2), p(a(a(b(z0))), z2)) Tuples: ENCARG(a(z0)) -> c(ENCARG(z0)) ENCARG(b(z0)) -> c1(ENCARG(z0)) ENCARG(cons_p(z0, z1)) -> c2(P(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) P(a(z0), p(a(a(a(z1))), z2)) -> c6(P(a(a(b(z0))), z2)) ENCODE_P(z0, z1) -> c4(P(encArg(z0), encArg(z1))) ENCODE_P(z0, z1) -> c4(ENCARG(z0)) ENCODE_P(z0, z1) -> c4(ENCARG(z1)) S tuples: P(a(z0), p(a(a(a(z1))), z2)) -> c6(P(a(a(b(z0))), z2)) K tuples:none Defined Rule Symbols: p_2, encArg_1, encode_p_2, encode_a_1, encode_b_1 Defined Pair Symbols: ENCARG_1, P_2, ENCODE_P_2 Compound Symbols: c_1, c1_1, c2_3, c6_1, c4_1 ---------------------------------------- (13) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_P(z0, z1) -> c4(ENCARG(z0)) ENCODE_P(z0, z1) -> c4(ENCARG(z1)) ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(a(z0)) -> a(encArg(z0)) encArg(b(z0)) -> b(encArg(z0)) encArg(cons_p(z0, z1)) -> p(encArg(z0), encArg(z1)) encode_p(z0, z1) -> p(encArg(z0), encArg(z1)) encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) p(a(z0), p(a(a(a(z1))), z2)) -> p(a(z2), p(a(a(b(z0))), z2)) Tuples: ENCARG(a(z0)) -> c(ENCARG(z0)) ENCARG(b(z0)) -> c1(ENCARG(z0)) ENCARG(cons_p(z0, z1)) -> c2(P(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) P(a(z0), p(a(a(a(z1))), z2)) -> c6(P(a(a(b(z0))), z2)) ENCODE_P(z0, z1) -> c4(P(encArg(z0), encArg(z1))) S tuples: P(a(z0), p(a(a(a(z1))), z2)) -> c6(P(a(a(b(z0))), z2)) K tuples:none Defined Rule Symbols: p_2, encArg_1, encode_p_2, encode_a_1, encode_b_1 Defined Pair Symbols: ENCARG_1, P_2, ENCODE_P_2 Compound Symbols: c_1, c1_1, c2_3, c6_1, c4_1 ---------------------------------------- (15) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_p(z0, z1) -> p(encArg(z0), encArg(z1)) encode_a(z0) -> a(encArg(z0)) encode_b(z0) -> b(encArg(z0)) ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(a(z0)) -> a(encArg(z0)) encArg(b(z0)) -> b(encArg(z0)) encArg(cons_p(z0, z1)) -> p(encArg(z0), encArg(z1)) p(a(z0), p(a(a(a(z1))), z2)) -> p(a(z2), p(a(a(b(z0))), z2)) Tuples: ENCARG(a(z0)) -> c(ENCARG(z0)) ENCARG(b(z0)) -> c1(ENCARG(z0)) ENCARG(cons_p(z0, z1)) -> c2(P(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) P(a(z0), p(a(a(a(z1))), z2)) -> c6(P(a(a(b(z0))), z2)) ENCODE_P(z0, z1) -> c4(P(encArg(z0), encArg(z1))) S tuples: P(a(z0), p(a(a(a(z1))), z2)) -> c6(P(a(a(b(z0))), z2)) K tuples:none Defined Rule Symbols: encArg_1, p_2 Defined Pair Symbols: ENCARG_1, P_2, ENCODE_P_2 Compound Symbols: c_1, c1_1, c2_3, c6_1, c4_1 ---------------------------------------- (17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. P(a(z0), p(a(a(a(z1))), z2)) -> c6(P(a(a(b(z0))), z2)) We considered the (Usable) Rules: encArg(b(z0)) -> b(encArg(z0)) encArg(cons_p(z0, z1)) -> p(encArg(z0), encArg(z1)) encArg(a(z0)) -> a(encArg(z0)) p(a(z0), p(a(a(a(z1))), z2)) -> p(a(z2), p(a(a(b(z0))), z2)) And the Tuples: ENCARG(a(z0)) -> c(ENCARG(z0)) ENCARG(b(z0)) -> c1(ENCARG(z0)) ENCARG(cons_p(z0, z1)) -> c2(P(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) P(a(z0), p(a(a(a(z1))), z2)) -> c6(P(a(a(b(z0))), z2)) ENCODE_P(z0, z1) -> c4(P(encArg(z0), encArg(z1))) The order we found is given by the following interpretation: Polynomial interpretation : POL(ENCARG(x_1)) = [2] + x_1^2 POL(ENCODE_P(x_1, x_2)) = [2] + [2]x_1 + [2]x_2 + [2]x_2^2 + [2]x_1*x_2 + x_1^2 POL(P(x_1, x_2)) = [2] + [2]x_2 POL(a(x_1)) = x_1 POL(b(x_1)) = x_1 POL(c(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c2(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c4(x_1)) = x_1 POL(c6(x_1)) = x_1 POL(cons_p(x_1, x_2)) = [2] + x_1 + x_2 POL(encArg(x_1)) = x_1 POL(p(x_1, x_2)) = [2] + x_2 ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(a(z0)) -> a(encArg(z0)) encArg(b(z0)) -> b(encArg(z0)) encArg(cons_p(z0, z1)) -> p(encArg(z0), encArg(z1)) p(a(z0), p(a(a(a(z1))), z2)) -> p(a(z2), p(a(a(b(z0))), z2)) Tuples: ENCARG(a(z0)) -> c(ENCARG(z0)) ENCARG(b(z0)) -> c1(ENCARG(z0)) ENCARG(cons_p(z0, z1)) -> c2(P(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) P(a(z0), p(a(a(a(z1))), z2)) -> c6(P(a(a(b(z0))), z2)) ENCODE_P(z0, z1) -> c4(P(encArg(z0), encArg(z1))) S tuples:none K tuples: P(a(z0), p(a(a(a(z1))), z2)) -> c6(P(a(a(b(z0))), z2)) Defined Rule Symbols: encArg_1, p_2 Defined Pair Symbols: ENCARG_1, P_2, ENCODE_P_2 Compound Symbols: c_1, c1_1, c2_3, c6_1, c4_1 ---------------------------------------- (19) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (20) BOUNDS(1, 1)