/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- KILLED proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 41 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 435 ms] (12) BOUNDS(1, INF) (13) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (14) TRS for Loop Detection (15) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (16) CpxTRS (17) NonCtorToCtorProof [UPPER BOUND(ID), 0 ms] (18) CpxRelTRS (19) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CpxWeightedTrs (21) CpxWeightedTrsRenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CpxWeightedTrs (23) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (24) CpxTypedWeightedTrs (25) CompletionProof [UPPER BOUND(ID), 0 ms] (26) CpxTypedWeightedCompleteTrs (27) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (28) CpxRNTS (29) CompletionProof [UPPER BOUND(ID), 0 ms] (30) CpxTypedWeightedCompleteTrs (31) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (32) CpxTypedWeightedCompleteTrs (33) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (34) CpxRNTS (35) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (36) CpxRNTS (37) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (38) CdtProblem (39) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (40) CdtProblem (41) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (42) CdtProblem (43) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (44) CdtProblem (45) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (46) CdtProblem (47) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (48) CdtProblem (49) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (50) CdtProblem (51) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (52) CdtProblem (53) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (54) CdtProblem (55) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (56) CdtProblem (57) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (58) CdtProblem (59) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (60) CdtProblem (61) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (62) CdtProblem (63) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (64) CdtProblem (65) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (66) CdtProblem (67) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (68) CdtProblem (69) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (70) CdtProblem (71) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (72) CdtProblem ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: 0(0(0(0(x1)))) -> 0(1(1(1(x1)))) 1(1(0(1(x1)))) -> 0(0(0(0(x1)))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(cons_0(x_1)) -> 0(encArg(x_1)) encArg(cons_1(x_1)) -> 1(encArg(x_1)) encode_0(x_1) -> 0(encArg(x_1)) encode_1(x_1) -> 1(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: 0(0(0(0(x1)))) -> 0(1(1(1(x1)))) 1(1(0(1(x1)))) -> 0(0(0(0(x1)))) The (relative) TRS S consists of the following rules: encArg(cons_0(x_1)) -> 0(encArg(x_1)) encArg(cons_1(x_1)) -> 1(encArg(x_1)) encode_0(x_1) -> 0(encArg(x_1)) encode_1(x_1) -> 1(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: 0(0(0(0(x1)))) -> 0(1(1(1(x1)))) 1(1(0(1(x1)))) -> 0(0(0(0(x1)))) The (relative) TRS S consists of the following rules: encArg(cons_0(x_1)) -> 0(encArg(x_1)) encArg(cons_1(x_1)) -> 1(encArg(x_1)) encode_0(x_1) -> 0(encArg(x_1)) encode_1(x_1) -> 1(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: 0(0(0(0(x1)))) -> 0(1(1(1(x1)))) 1(1(0(1(x1)))) -> 0(0(0(0(x1)))) The (relative) TRS S consists of the following rules: encArg(cons_0(x_1)) -> 0(encArg(x_1)) encArg(cons_1(x_1)) -> 1(encArg(x_1)) encode_0(x_1) -> 0(encArg(x_1)) encode_1(x_1) -> 1(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: 0(0(0(0(x1)))) -> 0(1(1(1(x1)))) 1(1(0(1(x1)))) -> 0(0(0(0(x1)))) encArg(cons_0(x_1)) -> 0(encArg(x_1)) encArg(cons_1(x_1)) -> 1(encArg(x_1)) encode_0(x_1) -> 0(encArg(x_1)) encode_1(x_1) -> 1(encArg(x_1)) Types: 0 :: 0:1:encArg:encode_0:encode_1 -> 0:1:encArg:encode_0:encode_1 1 :: 0:1:encArg:encode_0:encode_1 -> 0:1:encArg:encode_0:encode_1 encArg :: cons_0:cons_1 -> 0:1:encArg:encode_0:encode_1 cons_0 :: cons_0:cons_1 -> cons_0:cons_1 cons_1 :: cons_0:cons_1 -> cons_0:cons_1 encode_0 :: cons_0:cons_1 -> 0:1:encArg:encode_0:encode_1 encode_1 :: cons_0:cons_1 -> 0:1:encArg:encode_0:encode_1 hole_0:1:encArg:encode_0:encode_11_2 :: 0:1:encArg:encode_0:encode_1 hole_cons_0:cons_12_2 :: cons_0:cons_1 gen_cons_0:cons_13_2 :: Nat -> cons_0:cons_1 ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: 0, 1, encArg They will be analysed ascendingly in the following order: 0 = 1 0 < encArg 1 < encArg ---------------------------------------- (10) Obligation: Innermost TRS: Rules: 0(0(0(0(x1)))) -> 0(1(1(1(x1)))) 1(1(0(1(x1)))) -> 0(0(0(0(x1)))) encArg(cons_0(x_1)) -> 0(encArg(x_1)) encArg(cons_1(x_1)) -> 1(encArg(x_1)) encode_0(x_1) -> 0(encArg(x_1)) encode_1(x_1) -> 1(encArg(x_1)) Types: 0 :: 0:1:encArg:encode_0:encode_1 -> 0:1:encArg:encode_0:encode_1 1 :: 0:1:encArg:encode_0:encode_1 -> 0:1:encArg:encode_0:encode_1 encArg :: cons_0:cons_1 -> 0:1:encArg:encode_0:encode_1 cons_0 :: cons_0:cons_1 -> cons_0:cons_1 cons_1 :: cons_0:cons_1 -> cons_0:cons_1 encode_0 :: cons_0:cons_1 -> 0:1:encArg:encode_0:encode_1 encode_1 :: cons_0:cons_1 -> 0:1:encArg:encode_0:encode_1 hole_0:1:encArg:encode_0:encode_11_2 :: 0:1:encArg:encode_0:encode_1 hole_cons_0:cons_12_2 :: cons_0:cons_1 gen_cons_0:cons_13_2 :: Nat -> cons_0:cons_1 Generator Equations: gen_cons_0:cons_13_2(0) <=> hole_cons_0:cons_12_2 gen_cons_0:cons_13_2(+(x, 1)) <=> cons_0(gen_cons_0:cons_13_2(x)) The following defined symbols remain to be analysed: 1, 0, encArg They will be analysed ascendingly in the following order: 0 = 1 0 < encArg 1 < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_cons_0:cons_13_2(+(1, n11_2))) -> *4_2, rt in Omega(0) Induction Base: encArg(gen_cons_0:cons_13_2(+(1, 0))) Induction Step: encArg(gen_cons_0:cons_13_2(+(1, +(n11_2, 1)))) ->_R^Omega(0) 0(encArg(gen_cons_0:cons_13_2(+(1, n11_2)))) ->_IH 0(*4_2) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (12) BOUNDS(1, INF) ---------------------------------------- (13) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (14) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: 0(0(0(0(x1)))) -> 0(1(1(1(x1)))) 1(1(0(1(x1)))) -> 0(0(0(0(x1)))) The (relative) TRS S consists of the following rules: encArg(cons_0(x_1)) -> 0(encArg(x_1)) encArg(cons_1(x_1)) -> 1(encArg(x_1)) encode_0(x_1) -> 0(encArg(x_1)) encode_1(x_1) -> 1(encArg(x_1)) Rewrite Strategy: INNERMOST ---------------------------------------- (15) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (16) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: 0(0(0(0(x1)))) -> 0(1(1(1(x1)))) 1(1(0(1(x1)))) -> 0(0(0(0(x1)))) encArg(cons_0(x_1)) -> 0(encArg(x_1)) encArg(cons_1(x_1)) -> 1(encArg(x_1)) encode_0(x_1) -> 0(encArg(x_1)) encode_1(x_1) -> 1(encArg(x_1)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (17) NonCtorToCtorProof (UPPER BOUND(ID)) transformed non-ctor to ctor-system ---------------------------------------- (18) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: 0(c_0(c_0(c_0(x1)))) -> 0(1(1(1(x1)))) 1(c_1(c_0(c_1(x1)))) -> 0(0(0(0(x1)))) The (relative) TRS S consists of the following rules: encArg(cons_0(x_1)) -> 0(encArg(x_1)) encArg(cons_1(x_1)) -> 1(encArg(x_1)) encode_0(x_1) -> 0(encArg(x_1)) encode_1(x_1) -> 1(encArg(x_1)) 0(x0) -> c_0(x0) 1(x0) -> c_1(x0) Rewrite Strategy: INNERMOST ---------------------------------------- (19) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (20) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: 0(c_0(c_0(c_0(x1)))) -> 0(1(1(1(x1)))) [1] 1(c_1(c_0(c_1(x1)))) -> 0(0(0(0(x1)))) [1] encArg(cons_0(x_1)) -> 0(encArg(x_1)) [0] encArg(cons_1(x_1)) -> 1(encArg(x_1)) [0] encode_0(x_1) -> 0(encArg(x_1)) [0] encode_1(x_1) -> 1(encArg(x_1)) [0] 0(x0) -> c_0(x0) [0] 1(x0) -> c_1(x0) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (21) CpxWeightedTrsRenamingProof (BOTH BOUNDS(ID, ID)) Renamed defined symbols to avoid conflicts with arithmetic symbols: 0 => 0' 1 => 1' ---------------------------------------- (22) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: 0'(c_0(c_0(c_0(x1)))) -> 0'(1'(1'(1'(x1)))) [1] 1'(c_1(c_0(c_1(x1)))) -> 0'(0'(0'(0'(x1)))) [1] encArg(cons_0(x_1)) -> 0'(encArg(x_1)) [0] encArg(cons_1(x_1)) -> 1'(encArg(x_1)) [0] encode_0(x_1) -> 0'(encArg(x_1)) [0] encode_1(x_1) -> 1'(encArg(x_1)) [0] 0'(x0) -> c_0(x0) [0] 1'(x0) -> c_1(x0) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (23) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (24) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: 0'(c_0(c_0(c_0(x1)))) -> 0'(1'(1'(1'(x1)))) [1] 1'(c_1(c_0(c_1(x1)))) -> 0'(0'(0'(0'(x1)))) [1] encArg(cons_0(x_1)) -> 0'(encArg(x_1)) [0] encArg(cons_1(x_1)) -> 1'(encArg(x_1)) [0] encode_0(x_1) -> 0'(encArg(x_1)) [0] encode_1(x_1) -> 1'(encArg(x_1)) [0] 0'(x0) -> c_0(x0) [0] 1'(x0) -> c_1(x0) [0] The TRS has the following type information: 0' :: c_0:c_1 -> c_0:c_1 c_0 :: c_0:c_1 -> c_0:c_1 1' :: c_0:c_1 -> c_0:c_1 c_1 :: c_0:c_1 -> c_0:c_1 encArg :: cons_0:cons_1 -> c_0:c_1 cons_0 :: cons_0:cons_1 -> cons_0:cons_1 cons_1 :: cons_0:cons_1 -> cons_0:cons_1 encode_0 :: cons_0:cons_1 -> c_0:c_1 encode_1 :: cons_0:cons_1 -> c_0:c_1 Rewrite Strategy: INNERMOST ---------------------------------------- (25) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: encArg(v0) -> null_encArg [0] encode_0(v0) -> null_encode_0 [0] encode_1(v0) -> null_encode_1 [0] 0'(v0) -> null_0' [0] 1'(v0) -> null_1' [0] And the following fresh constants: null_encArg, null_encode_0, null_encode_1, null_0', null_1', const ---------------------------------------- (26) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: 0'(c_0(c_0(c_0(x1)))) -> 0'(1'(1'(1'(x1)))) [1] 1'(c_1(c_0(c_1(x1)))) -> 0'(0'(0'(0'(x1)))) [1] encArg(cons_0(x_1)) -> 0'(encArg(x_1)) [0] encArg(cons_1(x_1)) -> 1'(encArg(x_1)) [0] encode_0(x_1) -> 0'(encArg(x_1)) [0] encode_1(x_1) -> 1'(encArg(x_1)) [0] 0'(x0) -> c_0(x0) [0] 1'(x0) -> c_1(x0) [0] encArg(v0) -> null_encArg [0] encode_0(v0) -> null_encode_0 [0] encode_1(v0) -> null_encode_1 [0] 0'(v0) -> null_0' [0] 1'(v0) -> null_1' [0] The TRS has the following type information: 0' :: c_0:c_1:null_encArg:null_encode_0:null_encode_1:null_0':null_1' -> c_0:c_1:null_encArg:null_encode_0:null_encode_1:null_0':null_1' c_0 :: c_0:c_1:null_encArg:null_encode_0:null_encode_1:null_0':null_1' -> c_0:c_1:null_encArg:null_encode_0:null_encode_1:null_0':null_1' 1' :: c_0:c_1:null_encArg:null_encode_0:null_encode_1:null_0':null_1' -> c_0:c_1:null_encArg:null_encode_0:null_encode_1:null_0':null_1' c_1 :: c_0:c_1:null_encArg:null_encode_0:null_encode_1:null_0':null_1' -> c_0:c_1:null_encArg:null_encode_0:null_encode_1:null_0':null_1' encArg :: cons_0:cons_1 -> c_0:c_1:null_encArg:null_encode_0:null_encode_1:null_0':null_1' cons_0 :: cons_0:cons_1 -> cons_0:cons_1 cons_1 :: cons_0:cons_1 -> cons_0:cons_1 encode_0 :: cons_0:cons_1 -> c_0:c_1:null_encArg:null_encode_0:null_encode_1:null_0':null_1' encode_1 :: cons_0:cons_1 -> c_0:c_1:null_encArg:null_encode_0:null_encode_1:null_0':null_1' null_encArg :: c_0:c_1:null_encArg:null_encode_0:null_encode_1:null_0':null_1' null_encode_0 :: c_0:c_1:null_encArg:null_encode_0:null_encode_1:null_0':null_1' null_encode_1 :: c_0:c_1:null_encArg:null_encode_0:null_encode_1:null_0':null_1' null_0' :: c_0:c_1:null_encArg:null_encode_0:null_encode_1:null_0':null_1' null_1' :: c_0:c_1:null_encArg:null_encode_0:null_encode_1:null_0':null_1' const :: cons_0:cons_1 Rewrite Strategy: INNERMOST ---------------------------------------- (27) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: null_encArg => 0 null_encode_0 => 0 null_encode_1 => 0 null_0' => 0 null_1' => 0 const => 0 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: 0'(z) -{ 1 }-> 0'(1'(1'(1'(x1)))) :|: x1 >= 0, z = 1 + (1 + (1 + x1)) 0'(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 0'(z) -{ 0 }-> 1 + x0 :|: z = x0, x0 >= 0 1'(z) -{ 1 }-> 0'(0'(0'(0'(x1)))) :|: x1 >= 0, z = 1 + (1 + (1 + x1)) 1'(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 1'(z) -{ 0 }-> 1 + x0 :|: z = x0, x0 >= 0 encArg(z) -{ 0 }-> 1'(encArg(x_1)) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 0 }-> 0'(encArg(x_1)) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_0(z) -{ 0 }-> 0'(encArg(x_1)) :|: x_1 >= 0, z = x_1 encode_0(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_1(z) -{ 0 }-> 1'(encArg(x_1)) :|: x_1 >= 0, z = x_1 encode_1(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (29) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: encArg_1 encode_0_1 encode_1_1 0'_1 1'_1 Due to the following rules being added: encArg(v0) -> const [0] encode_0(v0) -> const [0] encode_1(v0) -> const [0] 0'(v0) -> const [0] 1'(v0) -> const [0] And the following fresh constants: const, const1 ---------------------------------------- (30) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: 0'(c_0(c_0(c_0(x1)))) -> 0'(1'(1'(1'(x1)))) [1] 1'(c_1(c_0(c_1(x1)))) -> 0'(0'(0'(0'(x1)))) [1] encArg(cons_0(x_1)) -> 0'(encArg(x_1)) [0] encArg(cons_1(x_1)) -> 1'(encArg(x_1)) [0] encode_0(x_1) -> 0'(encArg(x_1)) [0] encode_1(x_1) -> 1'(encArg(x_1)) [0] 0'(x0) -> c_0(x0) [0] 1'(x0) -> c_1(x0) [0] encArg(v0) -> const [0] encode_0(v0) -> const [0] encode_1(v0) -> const [0] 0'(v0) -> const [0] 1'(v0) -> const [0] The TRS has the following type information: 0' :: c_0:c_1:const -> c_0:c_1:const c_0 :: c_0:c_1:const -> c_0:c_1:const 1' :: c_0:c_1:const -> c_0:c_1:const c_1 :: c_0:c_1:const -> c_0:c_1:const encArg :: cons_0:cons_1 -> c_0:c_1:const cons_0 :: cons_0:cons_1 -> cons_0:cons_1 cons_1 :: cons_0:cons_1 -> cons_0:cons_1 encode_0 :: cons_0:cons_1 -> c_0:c_1:const encode_1 :: cons_0:cons_1 -> c_0:c_1:const const :: c_0:c_1:const const1 :: cons_0:cons_1 Rewrite Strategy: INNERMOST ---------------------------------------- (31) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (32) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: 0'(c_0(c_0(c_0(c_1(c_0(c_1(x1'))))))) -> 0'(1'(1'(0'(0'(0'(0'(x1'))))))) [2] 0'(c_0(c_0(c_0(x1)))) -> 0'(1'(1'(c_1(x1)))) [1] 0'(c_0(c_0(c_0(x1)))) -> 0'(1'(1'(const))) [1] 1'(c_1(c_0(c_1(c_0(c_0(c_0(x1''))))))) -> 0'(0'(0'(0'(1'(1'(1'(x1''))))))) [2] 1'(c_1(c_0(c_1(x1)))) -> 0'(0'(0'(c_0(x1)))) [1] 1'(c_1(c_0(c_1(x1)))) -> 0'(0'(0'(const))) [1] encArg(cons_0(cons_0(x_1'))) -> 0'(0'(encArg(x_1'))) [0] encArg(cons_0(cons_1(x_1''))) -> 0'(1'(encArg(x_1''))) [0] encArg(cons_0(x_1)) -> 0'(const) [0] encArg(cons_1(cons_0(x_11))) -> 1'(0'(encArg(x_11))) [0] encArg(cons_1(cons_1(x_12))) -> 1'(1'(encArg(x_12))) [0] encArg(cons_1(x_1)) -> 1'(const) [0] encode_0(cons_0(x_13)) -> 0'(0'(encArg(x_13))) [0] encode_0(cons_1(x_14)) -> 0'(1'(encArg(x_14))) [0] encode_0(x_1) -> 0'(const) [0] encode_1(cons_0(x_15)) -> 1'(0'(encArg(x_15))) [0] encode_1(cons_1(x_16)) -> 1'(1'(encArg(x_16))) [0] encode_1(x_1) -> 1'(const) [0] 0'(x0) -> c_0(x0) [0] 1'(x0) -> c_1(x0) [0] encArg(v0) -> const [0] encode_0(v0) -> const [0] encode_1(v0) -> const [0] 0'(v0) -> const [0] 1'(v0) -> const [0] The TRS has the following type information: 0' :: c_0:c_1:const -> c_0:c_1:const c_0 :: c_0:c_1:const -> c_0:c_1:const 1' :: c_0:c_1:const -> c_0:c_1:const c_1 :: c_0:c_1:const -> c_0:c_1:const encArg :: cons_0:cons_1 -> c_0:c_1:const cons_0 :: cons_0:cons_1 -> cons_0:cons_1 cons_1 :: cons_0:cons_1 -> cons_0:cons_1 encode_0 :: cons_0:cons_1 -> c_0:c_1:const encode_1 :: cons_0:cons_1 -> c_0:c_1:const const :: c_0:c_1:const const1 :: cons_0:cons_1 Rewrite Strategy: INNERMOST ---------------------------------------- (33) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: const => 0 const1 => 0 ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: 0'(z) -{ 2 }-> 0'(1'(1'(0'(0'(0'(0'(x1'))))))) :|: z = 1 + (1 + (1 + (1 + (1 + (1 + x1'))))), x1' >= 0 0'(z) -{ 1 }-> 0'(1'(1'(0))) :|: x1 >= 0, z = 1 + (1 + (1 + x1)) 0'(z) -{ 1 }-> 0'(1'(1'(1 + x1))) :|: x1 >= 0, z = 1 + (1 + (1 + x1)) 0'(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 0'(z) -{ 0 }-> 1 + x0 :|: z = x0, x0 >= 0 1'(z) -{ 2 }-> 0'(0'(0'(0'(1'(1'(1'(x1''))))))) :|: x1'' >= 0, z = 1 + (1 + (1 + (1 + (1 + (1 + x1''))))) 1'(z) -{ 1 }-> 0'(0'(0'(0))) :|: x1 >= 0, z = 1 + (1 + (1 + x1)) 1'(z) -{ 1 }-> 0'(0'(0'(1 + x1))) :|: x1 >= 0, z = 1 + (1 + (1 + x1)) 1'(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 1'(z) -{ 0 }-> 1 + x0 :|: z = x0, x0 >= 0 encArg(z) -{ 0 }-> 1'(1'(encArg(x_12))) :|: z = 1 + (1 + x_12), x_12 >= 0 encArg(z) -{ 0 }-> 1'(0'(encArg(x_11))) :|: x_11 >= 0, z = 1 + (1 + x_11) encArg(z) -{ 0 }-> 1'(0) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 0 }-> 0'(1'(encArg(x_1''))) :|: z = 1 + (1 + x_1''), x_1'' >= 0 encArg(z) -{ 0 }-> 0'(0'(encArg(x_1'))) :|: z = 1 + (1 + x_1'), x_1' >= 0 encArg(z) -{ 0 }-> 0'(0) :|: z = 1 + x_1, x_1 >= 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_0(z) -{ 0 }-> 0'(1'(encArg(x_14))) :|: x_14 >= 0, z = 1 + x_14 encode_0(z) -{ 0 }-> 0'(0'(encArg(x_13))) :|: z = 1 + x_13, x_13 >= 0 encode_0(z) -{ 0 }-> 0'(0) :|: x_1 >= 0, z = x_1 encode_0(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_1(z) -{ 0 }-> 1'(1'(encArg(x_16))) :|: z = 1 + x_16, x_16 >= 0 encode_1(z) -{ 0 }-> 1'(0'(encArg(x_15))) :|: x_15 >= 0, z = 1 + x_15 encode_1(z) -{ 0 }-> 1'(0) :|: x_1 >= 0, z = x_1 encode_1(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 ---------------------------------------- (35) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: 0'(z) -{ 2 }-> 0'(1'(1'(0'(0'(0'(0'(z - 6))))))) :|: z - 6 >= 0 0'(z) -{ 1 }-> 0'(1'(1'(0))) :|: z - 3 >= 0 0'(z) -{ 1 }-> 0'(1'(1'(1 + (z - 3)))) :|: z - 3 >= 0 0'(z) -{ 0 }-> 0 :|: z >= 0 0'(z) -{ 0 }-> 1 + z :|: z >= 0 1'(z) -{ 2 }-> 0'(0'(0'(0'(1'(1'(1'(z - 6))))))) :|: z - 6 >= 0 1'(z) -{ 1 }-> 0'(0'(0'(0))) :|: z - 3 >= 0 1'(z) -{ 1 }-> 0'(0'(0'(1 + (z - 3)))) :|: z - 3 >= 0 1'(z) -{ 0 }-> 0 :|: z >= 0 1'(z) -{ 0 }-> 1 + z :|: z >= 0 encArg(z) -{ 0 }-> 1'(1'(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1'(0'(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 1'(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> 0'(1'(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0'(0'(encArg(z - 2))) :|: z - 2 >= 0 encArg(z) -{ 0 }-> 0'(0) :|: z - 1 >= 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encode_0(z) -{ 0 }-> 0'(1'(encArg(z - 1))) :|: z - 1 >= 0 encode_0(z) -{ 0 }-> 0'(0'(encArg(z - 1))) :|: z - 1 >= 0 encode_0(z) -{ 0 }-> 0'(0) :|: z >= 0 encode_0(z) -{ 0 }-> 0 :|: z >= 0 encode_1(z) -{ 0 }-> 1'(1'(encArg(z - 1))) :|: z - 1 >= 0 encode_1(z) -{ 0 }-> 1'(0'(encArg(z - 1))) :|: z - 1 >= 0 encode_1(z) -{ 0 }-> 1'(0) :|: z >= 0 encode_1(z) -{ 0 }-> 0 :|: z >= 0 ---------------------------------------- (37) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (38) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_0(z0)) -> 0(encArg(z0)) encArg(cons_1(z0)) -> 1(encArg(z0)) encode_0(z0) -> 0(encArg(z0)) encode_1(z0) -> 1(encArg(z0)) 0(0(0(0(z0)))) -> 0(1(1(1(z0)))) 1(1(0(1(z0)))) -> 0(0(0(0(z0)))) Tuples: ENCARG(cons_0(z0)) -> c(0'(encArg(z0)), ENCARG(z0)) ENCARG(cons_1(z0)) -> c1(1'(encArg(z0)), ENCARG(z0)) ENCODE_0(z0) -> c2(0'(encArg(z0)), ENCARG(z0)) ENCODE_1(z0) -> c3(1'(encArg(z0)), ENCARG(z0)) 0'(0(0(0(z0)))) -> c4(0'(1(1(1(z0)))), 1'(1(1(z0))), 1'(1(z0)), 1'(z0)) 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) S tuples: 0'(0(0(0(z0)))) -> c4(0'(1(1(1(z0)))), 1'(1(1(z0))), 1'(1(z0)), 1'(z0)) 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) K tuples:none Defined Rule Symbols: 0_1, 1_1, encArg_1, encode_0_1, encode_1_1 Defined Pair Symbols: ENCARG_1, ENCODE_0_1, ENCODE_1_1, 0'_1, 1'_1 Compound Symbols: c_2, c1_2, c2_2, c3_2, c4_4, c5_4 ---------------------------------------- (39) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (40) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_0(z0)) -> 0(encArg(z0)) encArg(cons_1(z0)) -> 1(encArg(z0)) encode_0(z0) -> 0(encArg(z0)) encode_1(z0) -> 1(encArg(z0)) 0(0(0(0(z0)))) -> 0(1(1(1(z0)))) 1(1(0(1(z0)))) -> 0(0(0(0(z0)))) Tuples: ENCARG(cons_0(z0)) -> c(0'(encArg(z0)), ENCARG(z0)) ENCARG(cons_1(z0)) -> c1(1'(encArg(z0)), ENCARG(z0)) 0'(0(0(0(z0)))) -> c4(0'(1(1(1(z0)))), 1'(1(1(z0))), 1'(1(z0)), 1'(z0)) 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) ENCODE_0(z0) -> c6(0'(encArg(z0))) ENCODE_0(z0) -> c6(ENCARG(z0)) ENCODE_1(z0) -> c6(1'(encArg(z0))) ENCODE_1(z0) -> c6(ENCARG(z0)) S tuples: 0'(0(0(0(z0)))) -> c4(0'(1(1(1(z0)))), 1'(1(1(z0))), 1'(1(z0)), 1'(z0)) 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) K tuples:none Defined Rule Symbols: 0_1, 1_1, encArg_1, encode_0_1, encode_1_1 Defined Pair Symbols: ENCARG_1, 0'_1, 1'_1, ENCODE_0_1, ENCODE_1_1 Compound Symbols: c_2, c1_2, c4_4, c5_4, c6_1 ---------------------------------------- (41) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_0(z0) -> c6(ENCARG(z0)) ENCODE_1(z0) -> c6(ENCARG(z0)) ---------------------------------------- (42) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_0(z0)) -> 0(encArg(z0)) encArg(cons_1(z0)) -> 1(encArg(z0)) encode_0(z0) -> 0(encArg(z0)) encode_1(z0) -> 1(encArg(z0)) 0(0(0(0(z0)))) -> 0(1(1(1(z0)))) 1(1(0(1(z0)))) -> 0(0(0(0(z0)))) Tuples: ENCARG(cons_0(z0)) -> c(0'(encArg(z0)), ENCARG(z0)) ENCARG(cons_1(z0)) -> c1(1'(encArg(z0)), ENCARG(z0)) 0'(0(0(0(z0)))) -> c4(0'(1(1(1(z0)))), 1'(1(1(z0))), 1'(1(z0)), 1'(z0)) 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) ENCODE_0(z0) -> c6(0'(encArg(z0))) ENCODE_1(z0) -> c6(1'(encArg(z0))) S tuples: 0'(0(0(0(z0)))) -> c4(0'(1(1(1(z0)))), 1'(1(1(z0))), 1'(1(z0)), 1'(z0)) 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) K tuples:none Defined Rule Symbols: 0_1, 1_1, encArg_1, encode_0_1, encode_1_1 Defined Pair Symbols: ENCARG_1, 0'_1, 1'_1, ENCODE_0_1, ENCODE_1_1 Compound Symbols: c_2, c1_2, c4_4, c5_4, c6_1 ---------------------------------------- (43) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_0(z0) -> 0(encArg(z0)) encode_1(z0) -> 1(encArg(z0)) ---------------------------------------- (44) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_0(z0)) -> 0(encArg(z0)) encArg(cons_1(z0)) -> 1(encArg(z0)) 0(0(0(0(z0)))) -> 0(1(1(1(z0)))) 1(1(0(1(z0)))) -> 0(0(0(0(z0)))) Tuples: ENCARG(cons_0(z0)) -> c(0'(encArg(z0)), ENCARG(z0)) ENCARG(cons_1(z0)) -> c1(1'(encArg(z0)), ENCARG(z0)) 0'(0(0(0(z0)))) -> c4(0'(1(1(1(z0)))), 1'(1(1(z0))), 1'(1(z0)), 1'(z0)) 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) ENCODE_0(z0) -> c6(0'(encArg(z0))) ENCODE_1(z0) -> c6(1'(encArg(z0))) S tuples: 0'(0(0(0(z0)))) -> c4(0'(1(1(1(z0)))), 1'(1(1(z0))), 1'(1(z0)), 1'(z0)) 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) K tuples:none Defined Rule Symbols: encArg_1, 0_1, 1_1 Defined Pair Symbols: ENCARG_1, 0'_1, 1'_1, ENCODE_0_1, ENCODE_1_1 Compound Symbols: c_2, c1_2, c4_4, c5_4, c6_1 ---------------------------------------- (45) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ENCARG(cons_0(z0)) -> c(0'(encArg(z0)), ENCARG(z0)) by ENCARG(cons_0(cons_0(z0))) -> c(0'(0(encArg(z0))), ENCARG(cons_0(z0))) ENCARG(cons_0(cons_1(z0))) -> c(0'(1(encArg(z0))), ENCARG(cons_1(z0))) ---------------------------------------- (46) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_0(z0)) -> 0(encArg(z0)) encArg(cons_1(z0)) -> 1(encArg(z0)) 0(0(0(0(z0)))) -> 0(1(1(1(z0)))) 1(1(0(1(z0)))) -> 0(0(0(0(z0)))) Tuples: ENCARG(cons_1(z0)) -> c1(1'(encArg(z0)), ENCARG(z0)) 0'(0(0(0(z0)))) -> c4(0'(1(1(1(z0)))), 1'(1(1(z0))), 1'(1(z0)), 1'(z0)) 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) ENCODE_0(z0) -> c6(0'(encArg(z0))) ENCODE_1(z0) -> c6(1'(encArg(z0))) ENCARG(cons_0(cons_0(z0))) -> c(0'(0(encArg(z0))), ENCARG(cons_0(z0))) ENCARG(cons_0(cons_1(z0))) -> c(0'(1(encArg(z0))), ENCARG(cons_1(z0))) S tuples: 0'(0(0(0(z0)))) -> c4(0'(1(1(1(z0)))), 1'(1(1(z0))), 1'(1(z0)), 1'(z0)) 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) K tuples:none Defined Rule Symbols: encArg_1, 0_1, 1_1 Defined Pair Symbols: ENCARG_1, 0'_1, 1'_1, ENCODE_0_1, ENCODE_1_1 Compound Symbols: c1_2, c4_4, c5_4, c6_1, c_2 ---------------------------------------- (47) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ENCARG(cons_1(z0)) -> c1(1'(encArg(z0)), ENCARG(z0)) by ENCARG(cons_1(cons_0(z0))) -> c1(1'(0(encArg(z0))), ENCARG(cons_0(z0))) ENCARG(cons_1(cons_1(z0))) -> c1(1'(1(encArg(z0))), ENCARG(cons_1(z0))) ---------------------------------------- (48) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_0(z0)) -> 0(encArg(z0)) encArg(cons_1(z0)) -> 1(encArg(z0)) 0(0(0(0(z0)))) -> 0(1(1(1(z0)))) 1(1(0(1(z0)))) -> 0(0(0(0(z0)))) Tuples: 0'(0(0(0(z0)))) -> c4(0'(1(1(1(z0)))), 1'(1(1(z0))), 1'(1(z0)), 1'(z0)) 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) ENCODE_0(z0) -> c6(0'(encArg(z0))) ENCODE_1(z0) -> c6(1'(encArg(z0))) ENCARG(cons_0(cons_0(z0))) -> c(0'(0(encArg(z0))), ENCARG(cons_0(z0))) ENCARG(cons_0(cons_1(z0))) -> c(0'(1(encArg(z0))), ENCARG(cons_1(z0))) ENCARG(cons_1(cons_0(z0))) -> c1(1'(0(encArg(z0))), ENCARG(cons_0(z0))) ENCARG(cons_1(cons_1(z0))) -> c1(1'(1(encArg(z0))), ENCARG(cons_1(z0))) S tuples: 0'(0(0(0(z0)))) -> c4(0'(1(1(1(z0)))), 1'(1(1(z0))), 1'(1(z0)), 1'(z0)) 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) K tuples:none Defined Rule Symbols: encArg_1, 0_1, 1_1 Defined Pair Symbols: 0'_1, 1'_1, ENCODE_0_1, ENCODE_1_1, ENCARG_1 Compound Symbols: c4_4, c5_4, c6_1, c_2, c1_2 ---------------------------------------- (49) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace 0'(0(0(0(z0)))) -> c4(0'(1(1(1(z0)))), 1'(1(1(z0))), 1'(1(z0)), 1'(z0)) by 0'(0(0(0(1(0(1(z0))))))) -> c4(0'(1(1(0(0(0(0(z0))))))), 1'(1(1(1(0(1(z0)))))), 1'(1(1(0(1(z0))))), 1'(1(0(1(z0))))) 0'(0(0(0(x0)))) -> c4(1'(1(x0))) ---------------------------------------- (50) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_0(z0)) -> 0(encArg(z0)) encArg(cons_1(z0)) -> 1(encArg(z0)) 0(0(0(0(z0)))) -> 0(1(1(1(z0)))) 1(1(0(1(z0)))) -> 0(0(0(0(z0)))) Tuples: 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) ENCODE_0(z0) -> c6(0'(encArg(z0))) ENCODE_1(z0) -> c6(1'(encArg(z0))) ENCARG(cons_0(cons_0(z0))) -> c(0'(0(encArg(z0))), ENCARG(cons_0(z0))) ENCARG(cons_0(cons_1(z0))) -> c(0'(1(encArg(z0))), ENCARG(cons_1(z0))) ENCARG(cons_1(cons_0(z0))) -> c1(1'(0(encArg(z0))), ENCARG(cons_0(z0))) ENCARG(cons_1(cons_1(z0))) -> c1(1'(1(encArg(z0))), ENCARG(cons_1(z0))) 0'(0(0(0(1(0(1(z0))))))) -> c4(0'(1(1(0(0(0(0(z0))))))), 1'(1(1(1(0(1(z0)))))), 1'(1(1(0(1(z0))))), 1'(1(0(1(z0))))) 0'(0(0(0(x0)))) -> c4(1'(1(x0))) S tuples: 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) 0'(0(0(0(1(0(1(z0))))))) -> c4(0'(1(1(0(0(0(0(z0))))))), 1'(1(1(1(0(1(z0)))))), 1'(1(1(0(1(z0))))), 1'(1(0(1(z0))))) 0'(0(0(0(x0)))) -> c4(1'(1(x0))) K tuples:none Defined Rule Symbols: encArg_1, 0_1, 1_1 Defined Pair Symbols: 1'_1, ENCODE_0_1, ENCODE_1_1, ENCARG_1, 0'_1 Compound Symbols: c5_4, c6_1, c_2, c1_2, c4_4, c4_1 ---------------------------------------- (51) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ENCODE_0(z0) -> c6(0'(encArg(z0))) by ENCODE_0(cons_0(z0)) -> c6(0'(0(encArg(z0)))) ENCODE_0(cons_1(z0)) -> c6(0'(1(encArg(z0)))) ---------------------------------------- (52) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_0(z0)) -> 0(encArg(z0)) encArg(cons_1(z0)) -> 1(encArg(z0)) 0(0(0(0(z0)))) -> 0(1(1(1(z0)))) 1(1(0(1(z0)))) -> 0(0(0(0(z0)))) Tuples: 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) ENCODE_1(z0) -> c6(1'(encArg(z0))) ENCARG(cons_0(cons_0(z0))) -> c(0'(0(encArg(z0))), ENCARG(cons_0(z0))) ENCARG(cons_0(cons_1(z0))) -> c(0'(1(encArg(z0))), ENCARG(cons_1(z0))) ENCARG(cons_1(cons_0(z0))) -> c1(1'(0(encArg(z0))), ENCARG(cons_0(z0))) ENCARG(cons_1(cons_1(z0))) -> c1(1'(1(encArg(z0))), ENCARG(cons_1(z0))) 0'(0(0(0(1(0(1(z0))))))) -> c4(0'(1(1(0(0(0(0(z0))))))), 1'(1(1(1(0(1(z0)))))), 1'(1(1(0(1(z0))))), 1'(1(0(1(z0))))) 0'(0(0(0(x0)))) -> c4(1'(1(x0))) ENCODE_0(cons_0(z0)) -> c6(0'(0(encArg(z0)))) ENCODE_0(cons_1(z0)) -> c6(0'(1(encArg(z0)))) S tuples: 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) 0'(0(0(0(1(0(1(z0))))))) -> c4(0'(1(1(0(0(0(0(z0))))))), 1'(1(1(1(0(1(z0)))))), 1'(1(1(0(1(z0))))), 1'(1(0(1(z0))))) 0'(0(0(0(x0)))) -> c4(1'(1(x0))) K tuples:none Defined Rule Symbols: encArg_1, 0_1, 1_1 Defined Pair Symbols: 1'_1, ENCODE_1_1, ENCARG_1, 0'_1, ENCODE_0_1 Compound Symbols: c5_4, c6_1, c_2, c1_2, c4_4, c4_1 ---------------------------------------- (53) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ENCODE_1(z0) -> c6(1'(encArg(z0))) by ENCODE_1(cons_0(z0)) -> c6(1'(0(encArg(z0)))) ENCODE_1(cons_1(z0)) -> c6(1'(1(encArg(z0)))) ---------------------------------------- (54) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_0(z0)) -> 0(encArg(z0)) encArg(cons_1(z0)) -> 1(encArg(z0)) 0(0(0(0(z0)))) -> 0(1(1(1(z0)))) 1(1(0(1(z0)))) -> 0(0(0(0(z0)))) Tuples: 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) ENCARG(cons_0(cons_0(z0))) -> c(0'(0(encArg(z0))), ENCARG(cons_0(z0))) ENCARG(cons_0(cons_1(z0))) -> c(0'(1(encArg(z0))), ENCARG(cons_1(z0))) ENCARG(cons_1(cons_0(z0))) -> c1(1'(0(encArg(z0))), ENCARG(cons_0(z0))) ENCARG(cons_1(cons_1(z0))) -> c1(1'(1(encArg(z0))), ENCARG(cons_1(z0))) 0'(0(0(0(1(0(1(z0))))))) -> c4(0'(1(1(0(0(0(0(z0))))))), 1'(1(1(1(0(1(z0)))))), 1'(1(1(0(1(z0))))), 1'(1(0(1(z0))))) 0'(0(0(0(x0)))) -> c4(1'(1(x0))) ENCODE_0(cons_0(z0)) -> c6(0'(0(encArg(z0)))) ENCODE_0(cons_1(z0)) -> c6(0'(1(encArg(z0)))) ENCODE_1(cons_0(z0)) -> c6(1'(0(encArg(z0)))) ENCODE_1(cons_1(z0)) -> c6(1'(1(encArg(z0)))) S tuples: 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) 0'(0(0(0(1(0(1(z0))))))) -> c4(0'(1(1(0(0(0(0(z0))))))), 1'(1(1(1(0(1(z0)))))), 1'(1(1(0(1(z0))))), 1'(1(0(1(z0))))) 0'(0(0(0(x0)))) -> c4(1'(1(x0))) K tuples:none Defined Rule Symbols: encArg_1, 0_1, 1_1 Defined Pair Symbols: 1'_1, ENCARG_1, 0'_1, ENCODE_0_1, ENCODE_1_1 Compound Symbols: c5_4, c_2, c1_2, c4_4, c4_1, c6_1 ---------------------------------------- (55) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ENCARG(cons_0(cons_0(z0))) -> c(0'(0(encArg(z0))), ENCARG(cons_0(z0))) by ENCARG(cons_0(cons_0(cons_0(z0)))) -> c(0'(0(0(encArg(z0)))), ENCARG(cons_0(cons_0(z0)))) ENCARG(cons_0(cons_0(cons_1(z0)))) -> c(0'(0(1(encArg(z0)))), ENCARG(cons_0(cons_1(z0)))) ---------------------------------------- (56) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_0(z0)) -> 0(encArg(z0)) encArg(cons_1(z0)) -> 1(encArg(z0)) 0(0(0(0(z0)))) -> 0(1(1(1(z0)))) 1(1(0(1(z0)))) -> 0(0(0(0(z0)))) Tuples: 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) ENCARG(cons_0(cons_1(z0))) -> c(0'(1(encArg(z0))), ENCARG(cons_1(z0))) ENCARG(cons_1(cons_0(z0))) -> c1(1'(0(encArg(z0))), ENCARG(cons_0(z0))) ENCARG(cons_1(cons_1(z0))) -> c1(1'(1(encArg(z0))), ENCARG(cons_1(z0))) 0'(0(0(0(1(0(1(z0))))))) -> c4(0'(1(1(0(0(0(0(z0))))))), 1'(1(1(1(0(1(z0)))))), 1'(1(1(0(1(z0))))), 1'(1(0(1(z0))))) 0'(0(0(0(x0)))) -> c4(1'(1(x0))) ENCODE_0(cons_0(z0)) -> c6(0'(0(encArg(z0)))) ENCODE_0(cons_1(z0)) -> c6(0'(1(encArg(z0)))) ENCODE_1(cons_0(z0)) -> c6(1'(0(encArg(z0)))) ENCODE_1(cons_1(z0)) -> c6(1'(1(encArg(z0)))) ENCARG(cons_0(cons_0(cons_0(z0)))) -> c(0'(0(0(encArg(z0)))), ENCARG(cons_0(cons_0(z0)))) ENCARG(cons_0(cons_0(cons_1(z0)))) -> c(0'(0(1(encArg(z0)))), ENCARG(cons_0(cons_1(z0)))) S tuples: 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) 0'(0(0(0(1(0(1(z0))))))) -> c4(0'(1(1(0(0(0(0(z0))))))), 1'(1(1(1(0(1(z0)))))), 1'(1(1(0(1(z0))))), 1'(1(0(1(z0))))) 0'(0(0(0(x0)))) -> c4(1'(1(x0))) K tuples:none Defined Rule Symbols: encArg_1, 0_1, 1_1 Defined Pair Symbols: 1'_1, ENCARG_1, 0'_1, ENCODE_0_1, ENCODE_1_1 Compound Symbols: c5_4, c_2, c1_2, c4_4, c4_1, c6_1 ---------------------------------------- (57) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ENCARG(cons_0(cons_1(z0))) -> c(0'(1(encArg(z0))), ENCARG(cons_1(z0))) by ENCARG(cons_0(cons_1(cons_0(z0)))) -> c(0'(1(0(encArg(z0)))), ENCARG(cons_1(cons_0(z0)))) ENCARG(cons_0(cons_1(cons_1(z0)))) -> c(0'(1(1(encArg(z0)))), ENCARG(cons_1(cons_1(z0)))) ---------------------------------------- (58) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_0(z0)) -> 0(encArg(z0)) encArg(cons_1(z0)) -> 1(encArg(z0)) 0(0(0(0(z0)))) -> 0(1(1(1(z0)))) 1(1(0(1(z0)))) -> 0(0(0(0(z0)))) Tuples: 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) ENCARG(cons_1(cons_0(z0))) -> c1(1'(0(encArg(z0))), ENCARG(cons_0(z0))) ENCARG(cons_1(cons_1(z0))) -> c1(1'(1(encArg(z0))), ENCARG(cons_1(z0))) 0'(0(0(0(1(0(1(z0))))))) -> c4(0'(1(1(0(0(0(0(z0))))))), 1'(1(1(1(0(1(z0)))))), 1'(1(1(0(1(z0))))), 1'(1(0(1(z0))))) 0'(0(0(0(x0)))) -> c4(1'(1(x0))) ENCODE_0(cons_0(z0)) -> c6(0'(0(encArg(z0)))) ENCODE_0(cons_1(z0)) -> c6(0'(1(encArg(z0)))) ENCODE_1(cons_0(z0)) -> c6(1'(0(encArg(z0)))) ENCODE_1(cons_1(z0)) -> c6(1'(1(encArg(z0)))) ENCARG(cons_0(cons_0(cons_0(z0)))) -> c(0'(0(0(encArg(z0)))), ENCARG(cons_0(cons_0(z0)))) ENCARG(cons_0(cons_0(cons_1(z0)))) -> c(0'(0(1(encArg(z0)))), ENCARG(cons_0(cons_1(z0)))) ENCARG(cons_0(cons_1(cons_0(z0)))) -> c(0'(1(0(encArg(z0)))), ENCARG(cons_1(cons_0(z0)))) ENCARG(cons_0(cons_1(cons_1(z0)))) -> c(0'(1(1(encArg(z0)))), ENCARG(cons_1(cons_1(z0)))) S tuples: 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) 0'(0(0(0(1(0(1(z0))))))) -> c4(0'(1(1(0(0(0(0(z0))))))), 1'(1(1(1(0(1(z0)))))), 1'(1(1(0(1(z0))))), 1'(1(0(1(z0))))) 0'(0(0(0(x0)))) -> c4(1'(1(x0))) K tuples:none Defined Rule Symbols: encArg_1, 0_1, 1_1 Defined Pair Symbols: 1'_1, ENCARG_1, 0'_1, ENCODE_0_1, ENCODE_1_1 Compound Symbols: c5_4, c1_2, c4_4, c4_1, c6_1, c_2 ---------------------------------------- (59) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ENCARG(cons_1(cons_0(z0))) -> c1(1'(0(encArg(z0))), ENCARG(cons_0(z0))) by ENCARG(cons_1(cons_0(cons_0(z0)))) -> c1(1'(0(0(encArg(z0)))), ENCARG(cons_0(cons_0(z0)))) ENCARG(cons_1(cons_0(cons_1(z0)))) -> c1(1'(0(1(encArg(z0)))), ENCARG(cons_0(cons_1(z0)))) ---------------------------------------- (60) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_0(z0)) -> 0(encArg(z0)) encArg(cons_1(z0)) -> 1(encArg(z0)) 0(0(0(0(z0)))) -> 0(1(1(1(z0)))) 1(1(0(1(z0)))) -> 0(0(0(0(z0)))) Tuples: 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) ENCARG(cons_1(cons_1(z0))) -> c1(1'(1(encArg(z0))), ENCARG(cons_1(z0))) 0'(0(0(0(1(0(1(z0))))))) -> c4(0'(1(1(0(0(0(0(z0))))))), 1'(1(1(1(0(1(z0)))))), 1'(1(1(0(1(z0))))), 1'(1(0(1(z0))))) 0'(0(0(0(x0)))) -> c4(1'(1(x0))) ENCODE_0(cons_0(z0)) -> c6(0'(0(encArg(z0)))) ENCODE_0(cons_1(z0)) -> c6(0'(1(encArg(z0)))) ENCODE_1(cons_0(z0)) -> c6(1'(0(encArg(z0)))) ENCODE_1(cons_1(z0)) -> c6(1'(1(encArg(z0)))) ENCARG(cons_0(cons_0(cons_0(z0)))) -> c(0'(0(0(encArg(z0)))), ENCARG(cons_0(cons_0(z0)))) ENCARG(cons_0(cons_0(cons_1(z0)))) -> c(0'(0(1(encArg(z0)))), ENCARG(cons_0(cons_1(z0)))) ENCARG(cons_0(cons_1(cons_0(z0)))) -> c(0'(1(0(encArg(z0)))), ENCARG(cons_1(cons_0(z0)))) ENCARG(cons_0(cons_1(cons_1(z0)))) -> c(0'(1(1(encArg(z0)))), ENCARG(cons_1(cons_1(z0)))) ENCARG(cons_1(cons_0(cons_0(z0)))) -> c1(1'(0(0(encArg(z0)))), ENCARG(cons_0(cons_0(z0)))) ENCARG(cons_1(cons_0(cons_1(z0)))) -> c1(1'(0(1(encArg(z0)))), ENCARG(cons_0(cons_1(z0)))) S tuples: 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) 0'(0(0(0(1(0(1(z0))))))) -> c4(0'(1(1(0(0(0(0(z0))))))), 1'(1(1(1(0(1(z0)))))), 1'(1(1(0(1(z0))))), 1'(1(0(1(z0))))) 0'(0(0(0(x0)))) -> c4(1'(1(x0))) K tuples:none Defined Rule Symbols: encArg_1, 0_1, 1_1 Defined Pair Symbols: 1'_1, ENCARG_1, 0'_1, ENCODE_0_1, ENCODE_1_1 Compound Symbols: c5_4, c1_2, c4_4, c4_1, c6_1, c_2 ---------------------------------------- (61) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ENCARG(cons_1(cons_1(z0))) -> c1(1'(1(encArg(z0))), ENCARG(cons_1(z0))) by ENCARG(cons_1(cons_1(cons_0(z0)))) -> c1(1'(1(0(encArg(z0)))), ENCARG(cons_1(cons_0(z0)))) ENCARG(cons_1(cons_1(cons_1(z0)))) -> c1(1'(1(1(encArg(z0)))), ENCARG(cons_1(cons_1(z0)))) ---------------------------------------- (62) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_0(z0)) -> 0(encArg(z0)) encArg(cons_1(z0)) -> 1(encArg(z0)) 0(0(0(0(z0)))) -> 0(1(1(1(z0)))) 1(1(0(1(z0)))) -> 0(0(0(0(z0)))) Tuples: 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) 0'(0(0(0(1(0(1(z0))))))) -> c4(0'(1(1(0(0(0(0(z0))))))), 1'(1(1(1(0(1(z0)))))), 1'(1(1(0(1(z0))))), 1'(1(0(1(z0))))) 0'(0(0(0(x0)))) -> c4(1'(1(x0))) ENCODE_0(cons_0(z0)) -> c6(0'(0(encArg(z0)))) ENCODE_0(cons_1(z0)) -> c6(0'(1(encArg(z0)))) ENCODE_1(cons_0(z0)) -> c6(1'(0(encArg(z0)))) ENCODE_1(cons_1(z0)) -> c6(1'(1(encArg(z0)))) ENCARG(cons_0(cons_0(cons_0(z0)))) -> c(0'(0(0(encArg(z0)))), ENCARG(cons_0(cons_0(z0)))) ENCARG(cons_0(cons_0(cons_1(z0)))) -> c(0'(0(1(encArg(z0)))), ENCARG(cons_0(cons_1(z0)))) ENCARG(cons_0(cons_1(cons_0(z0)))) -> c(0'(1(0(encArg(z0)))), ENCARG(cons_1(cons_0(z0)))) ENCARG(cons_0(cons_1(cons_1(z0)))) -> c(0'(1(1(encArg(z0)))), ENCARG(cons_1(cons_1(z0)))) ENCARG(cons_1(cons_0(cons_0(z0)))) -> c1(1'(0(0(encArg(z0)))), ENCARG(cons_0(cons_0(z0)))) ENCARG(cons_1(cons_0(cons_1(z0)))) -> c1(1'(0(1(encArg(z0)))), ENCARG(cons_0(cons_1(z0)))) ENCARG(cons_1(cons_1(cons_0(z0)))) -> c1(1'(1(0(encArg(z0)))), ENCARG(cons_1(cons_0(z0)))) ENCARG(cons_1(cons_1(cons_1(z0)))) -> c1(1'(1(1(encArg(z0)))), ENCARG(cons_1(cons_1(z0)))) S tuples: 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) 0'(0(0(0(1(0(1(z0))))))) -> c4(0'(1(1(0(0(0(0(z0))))))), 1'(1(1(1(0(1(z0)))))), 1'(1(1(0(1(z0))))), 1'(1(0(1(z0))))) 0'(0(0(0(x0)))) -> c4(1'(1(x0))) K tuples:none Defined Rule Symbols: encArg_1, 0_1, 1_1 Defined Pair Symbols: 1'_1, 0'_1, ENCODE_0_1, ENCODE_1_1, ENCARG_1 Compound Symbols: c5_4, c4_4, c4_1, c6_1, c_2, c1_2 ---------------------------------------- (63) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace 0'(0(0(0(1(0(1(z0))))))) -> c4(0'(1(1(0(0(0(0(z0))))))), 1'(1(1(1(0(1(z0)))))), 1'(1(1(0(1(z0))))), 1'(1(0(1(z0))))) by 0'(0(0(0(1(0(1(z0))))))) -> c4(0'(1(1(0(1(1(1(z0))))))), 1'(1(1(1(0(1(z0)))))), 1'(1(1(0(1(z0))))), 1'(1(0(1(z0))))) 0'(0(0(0(1(0(1(0(z0)))))))) -> c4(0'(1(1(0(0(1(1(1(z0)))))))), 1'(1(1(1(0(1(0(z0))))))), 1'(1(1(0(1(0(z0)))))), 1'(1(0(1(0(z0)))))) 0'(0(0(0(1(0(1(0(0(z0))))))))) -> c4(0'(1(1(0(0(0(1(1(1(z0))))))))), 1'(1(1(1(0(1(0(0(z0)))))))), 1'(1(1(0(1(0(0(z0))))))), 1'(1(0(1(0(0(z0))))))) 0'(0(0(0(1(0(1(0(0(0(z0)))))))))) -> c4(0'(1(1(0(0(0(0(1(1(1(z0)))))))))), 1'(1(1(1(0(1(0(0(0(z0))))))))), 1'(1(1(0(1(0(0(0(z0)))))))), 1'(1(0(1(0(0(0(z0)))))))) ---------------------------------------- (64) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_0(z0)) -> 0(encArg(z0)) encArg(cons_1(z0)) -> 1(encArg(z0)) 0(0(0(0(z0)))) -> 0(1(1(1(z0)))) 1(1(0(1(z0)))) -> 0(0(0(0(z0)))) Tuples: 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) 0'(0(0(0(x0)))) -> c4(1'(1(x0))) ENCODE_0(cons_0(z0)) -> c6(0'(0(encArg(z0)))) ENCODE_0(cons_1(z0)) -> c6(0'(1(encArg(z0)))) ENCODE_1(cons_0(z0)) -> c6(1'(0(encArg(z0)))) ENCODE_1(cons_1(z0)) -> c6(1'(1(encArg(z0)))) ENCARG(cons_0(cons_0(cons_0(z0)))) -> c(0'(0(0(encArg(z0)))), ENCARG(cons_0(cons_0(z0)))) ENCARG(cons_0(cons_0(cons_1(z0)))) -> c(0'(0(1(encArg(z0)))), ENCARG(cons_0(cons_1(z0)))) ENCARG(cons_0(cons_1(cons_0(z0)))) -> c(0'(1(0(encArg(z0)))), ENCARG(cons_1(cons_0(z0)))) ENCARG(cons_0(cons_1(cons_1(z0)))) -> c(0'(1(1(encArg(z0)))), ENCARG(cons_1(cons_1(z0)))) ENCARG(cons_1(cons_0(cons_0(z0)))) -> c1(1'(0(0(encArg(z0)))), ENCARG(cons_0(cons_0(z0)))) ENCARG(cons_1(cons_0(cons_1(z0)))) -> c1(1'(0(1(encArg(z0)))), ENCARG(cons_0(cons_1(z0)))) ENCARG(cons_1(cons_1(cons_0(z0)))) -> c1(1'(1(0(encArg(z0)))), ENCARG(cons_1(cons_0(z0)))) ENCARG(cons_1(cons_1(cons_1(z0)))) -> c1(1'(1(1(encArg(z0)))), ENCARG(cons_1(cons_1(z0)))) 0'(0(0(0(1(0(1(z0))))))) -> c4(0'(1(1(0(1(1(1(z0))))))), 1'(1(1(1(0(1(z0)))))), 1'(1(1(0(1(z0))))), 1'(1(0(1(z0))))) 0'(0(0(0(1(0(1(0(z0)))))))) -> c4(0'(1(1(0(0(1(1(1(z0)))))))), 1'(1(1(1(0(1(0(z0))))))), 1'(1(1(0(1(0(z0)))))), 1'(1(0(1(0(z0)))))) 0'(0(0(0(1(0(1(0(0(z0))))))))) -> c4(0'(1(1(0(0(0(1(1(1(z0))))))))), 1'(1(1(1(0(1(0(0(z0)))))))), 1'(1(1(0(1(0(0(z0))))))), 1'(1(0(1(0(0(z0))))))) 0'(0(0(0(1(0(1(0(0(0(z0)))))))))) -> c4(0'(1(1(0(0(0(0(1(1(1(z0)))))))))), 1'(1(1(1(0(1(0(0(0(z0))))))))), 1'(1(1(0(1(0(0(0(z0)))))))), 1'(1(0(1(0(0(0(z0)))))))) S tuples: 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) 0'(0(0(0(x0)))) -> c4(1'(1(x0))) 0'(0(0(0(1(0(1(z0))))))) -> c4(0'(1(1(0(1(1(1(z0))))))), 1'(1(1(1(0(1(z0)))))), 1'(1(1(0(1(z0))))), 1'(1(0(1(z0))))) 0'(0(0(0(1(0(1(0(z0)))))))) -> c4(0'(1(1(0(0(1(1(1(z0)))))))), 1'(1(1(1(0(1(0(z0))))))), 1'(1(1(0(1(0(z0)))))), 1'(1(0(1(0(z0)))))) 0'(0(0(0(1(0(1(0(0(z0))))))))) -> c4(0'(1(1(0(0(0(1(1(1(z0))))))))), 1'(1(1(1(0(1(0(0(z0)))))))), 1'(1(1(0(1(0(0(z0))))))), 1'(1(0(1(0(0(z0))))))) 0'(0(0(0(1(0(1(0(0(0(z0)))))))))) -> c4(0'(1(1(0(0(0(0(1(1(1(z0)))))))))), 1'(1(1(1(0(1(0(0(0(z0))))))))), 1'(1(1(0(1(0(0(0(z0)))))))), 1'(1(0(1(0(0(0(z0)))))))) K tuples:none Defined Rule Symbols: encArg_1, 0_1, 1_1 Defined Pair Symbols: 1'_1, 0'_1, ENCODE_0_1, ENCODE_1_1, ENCARG_1 Compound Symbols: c5_4, c4_1, c6_1, c_2, c1_2, c4_4 ---------------------------------------- (65) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ENCODE_0(cons_0(z0)) -> c6(0'(0(encArg(z0)))) by ENCODE_0(cons_0(cons_0(z0))) -> c6(0'(0(0(encArg(z0))))) ENCODE_0(cons_0(cons_1(z0))) -> c6(0'(0(1(encArg(z0))))) ---------------------------------------- (66) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_0(z0)) -> 0(encArg(z0)) encArg(cons_1(z0)) -> 1(encArg(z0)) 0(0(0(0(z0)))) -> 0(1(1(1(z0)))) 1(1(0(1(z0)))) -> 0(0(0(0(z0)))) Tuples: 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) 0'(0(0(0(x0)))) -> c4(1'(1(x0))) ENCODE_0(cons_1(z0)) -> c6(0'(1(encArg(z0)))) ENCODE_1(cons_0(z0)) -> c6(1'(0(encArg(z0)))) ENCODE_1(cons_1(z0)) -> c6(1'(1(encArg(z0)))) ENCARG(cons_0(cons_0(cons_0(z0)))) -> c(0'(0(0(encArg(z0)))), ENCARG(cons_0(cons_0(z0)))) ENCARG(cons_0(cons_0(cons_1(z0)))) -> c(0'(0(1(encArg(z0)))), ENCARG(cons_0(cons_1(z0)))) ENCARG(cons_0(cons_1(cons_0(z0)))) -> c(0'(1(0(encArg(z0)))), ENCARG(cons_1(cons_0(z0)))) ENCARG(cons_0(cons_1(cons_1(z0)))) -> c(0'(1(1(encArg(z0)))), ENCARG(cons_1(cons_1(z0)))) ENCARG(cons_1(cons_0(cons_0(z0)))) -> c1(1'(0(0(encArg(z0)))), ENCARG(cons_0(cons_0(z0)))) ENCARG(cons_1(cons_0(cons_1(z0)))) -> c1(1'(0(1(encArg(z0)))), ENCARG(cons_0(cons_1(z0)))) ENCARG(cons_1(cons_1(cons_0(z0)))) -> c1(1'(1(0(encArg(z0)))), ENCARG(cons_1(cons_0(z0)))) ENCARG(cons_1(cons_1(cons_1(z0)))) -> c1(1'(1(1(encArg(z0)))), ENCARG(cons_1(cons_1(z0)))) 0'(0(0(0(1(0(1(z0))))))) -> c4(0'(1(1(0(1(1(1(z0))))))), 1'(1(1(1(0(1(z0)))))), 1'(1(1(0(1(z0))))), 1'(1(0(1(z0))))) 0'(0(0(0(1(0(1(0(z0)))))))) -> c4(0'(1(1(0(0(1(1(1(z0)))))))), 1'(1(1(1(0(1(0(z0))))))), 1'(1(1(0(1(0(z0)))))), 1'(1(0(1(0(z0)))))) 0'(0(0(0(1(0(1(0(0(z0))))))))) -> c4(0'(1(1(0(0(0(1(1(1(z0))))))))), 1'(1(1(1(0(1(0(0(z0)))))))), 1'(1(1(0(1(0(0(z0))))))), 1'(1(0(1(0(0(z0))))))) 0'(0(0(0(1(0(1(0(0(0(z0)))))))))) -> c4(0'(1(1(0(0(0(0(1(1(1(z0)))))))))), 1'(1(1(1(0(1(0(0(0(z0))))))))), 1'(1(1(0(1(0(0(0(z0)))))))), 1'(1(0(1(0(0(0(z0)))))))) ENCODE_0(cons_0(cons_0(z0))) -> c6(0'(0(0(encArg(z0))))) ENCODE_0(cons_0(cons_1(z0))) -> c6(0'(0(1(encArg(z0))))) S tuples: 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) 0'(0(0(0(x0)))) -> c4(1'(1(x0))) 0'(0(0(0(1(0(1(z0))))))) -> c4(0'(1(1(0(1(1(1(z0))))))), 1'(1(1(1(0(1(z0)))))), 1'(1(1(0(1(z0))))), 1'(1(0(1(z0))))) 0'(0(0(0(1(0(1(0(z0)))))))) -> c4(0'(1(1(0(0(1(1(1(z0)))))))), 1'(1(1(1(0(1(0(z0))))))), 1'(1(1(0(1(0(z0)))))), 1'(1(0(1(0(z0)))))) 0'(0(0(0(1(0(1(0(0(z0))))))))) -> c4(0'(1(1(0(0(0(1(1(1(z0))))))))), 1'(1(1(1(0(1(0(0(z0)))))))), 1'(1(1(0(1(0(0(z0))))))), 1'(1(0(1(0(0(z0))))))) 0'(0(0(0(1(0(1(0(0(0(z0)))))))))) -> c4(0'(1(1(0(0(0(0(1(1(1(z0)))))))))), 1'(1(1(1(0(1(0(0(0(z0))))))))), 1'(1(1(0(1(0(0(0(z0)))))))), 1'(1(0(1(0(0(0(z0)))))))) K tuples:none Defined Rule Symbols: encArg_1, 0_1, 1_1 Defined Pair Symbols: 1'_1, 0'_1, ENCODE_0_1, ENCODE_1_1, ENCARG_1 Compound Symbols: c5_4, c4_1, c6_1, c_2, c1_2, c4_4 ---------------------------------------- (67) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ENCODE_0(cons_1(z0)) -> c6(0'(1(encArg(z0)))) by ENCODE_0(cons_1(cons_0(z0))) -> c6(0'(1(0(encArg(z0))))) ENCODE_0(cons_1(cons_1(z0))) -> c6(0'(1(1(encArg(z0))))) ---------------------------------------- (68) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_0(z0)) -> 0(encArg(z0)) encArg(cons_1(z0)) -> 1(encArg(z0)) 0(0(0(0(z0)))) -> 0(1(1(1(z0)))) 1(1(0(1(z0)))) -> 0(0(0(0(z0)))) Tuples: 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) 0'(0(0(0(x0)))) -> c4(1'(1(x0))) ENCODE_1(cons_0(z0)) -> c6(1'(0(encArg(z0)))) ENCODE_1(cons_1(z0)) -> c6(1'(1(encArg(z0)))) ENCARG(cons_0(cons_0(cons_0(z0)))) -> c(0'(0(0(encArg(z0)))), ENCARG(cons_0(cons_0(z0)))) ENCARG(cons_0(cons_0(cons_1(z0)))) -> c(0'(0(1(encArg(z0)))), ENCARG(cons_0(cons_1(z0)))) ENCARG(cons_0(cons_1(cons_0(z0)))) -> c(0'(1(0(encArg(z0)))), ENCARG(cons_1(cons_0(z0)))) ENCARG(cons_0(cons_1(cons_1(z0)))) -> c(0'(1(1(encArg(z0)))), ENCARG(cons_1(cons_1(z0)))) ENCARG(cons_1(cons_0(cons_0(z0)))) -> c1(1'(0(0(encArg(z0)))), ENCARG(cons_0(cons_0(z0)))) ENCARG(cons_1(cons_0(cons_1(z0)))) -> c1(1'(0(1(encArg(z0)))), ENCARG(cons_0(cons_1(z0)))) ENCARG(cons_1(cons_1(cons_0(z0)))) -> c1(1'(1(0(encArg(z0)))), ENCARG(cons_1(cons_0(z0)))) ENCARG(cons_1(cons_1(cons_1(z0)))) -> c1(1'(1(1(encArg(z0)))), ENCARG(cons_1(cons_1(z0)))) 0'(0(0(0(1(0(1(z0))))))) -> c4(0'(1(1(0(1(1(1(z0))))))), 1'(1(1(1(0(1(z0)))))), 1'(1(1(0(1(z0))))), 1'(1(0(1(z0))))) 0'(0(0(0(1(0(1(0(z0)))))))) -> c4(0'(1(1(0(0(1(1(1(z0)))))))), 1'(1(1(1(0(1(0(z0))))))), 1'(1(1(0(1(0(z0)))))), 1'(1(0(1(0(z0)))))) 0'(0(0(0(1(0(1(0(0(z0))))))))) -> c4(0'(1(1(0(0(0(1(1(1(z0))))))))), 1'(1(1(1(0(1(0(0(z0)))))))), 1'(1(1(0(1(0(0(z0))))))), 1'(1(0(1(0(0(z0))))))) 0'(0(0(0(1(0(1(0(0(0(z0)))))))))) -> c4(0'(1(1(0(0(0(0(1(1(1(z0)))))))))), 1'(1(1(1(0(1(0(0(0(z0))))))))), 1'(1(1(0(1(0(0(0(z0)))))))), 1'(1(0(1(0(0(0(z0)))))))) ENCODE_0(cons_0(cons_0(z0))) -> c6(0'(0(0(encArg(z0))))) ENCODE_0(cons_0(cons_1(z0))) -> c6(0'(0(1(encArg(z0))))) ENCODE_0(cons_1(cons_0(z0))) -> c6(0'(1(0(encArg(z0))))) ENCODE_0(cons_1(cons_1(z0))) -> c6(0'(1(1(encArg(z0))))) S tuples: 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) 0'(0(0(0(x0)))) -> c4(1'(1(x0))) 0'(0(0(0(1(0(1(z0))))))) -> c4(0'(1(1(0(1(1(1(z0))))))), 1'(1(1(1(0(1(z0)))))), 1'(1(1(0(1(z0))))), 1'(1(0(1(z0))))) 0'(0(0(0(1(0(1(0(z0)))))))) -> c4(0'(1(1(0(0(1(1(1(z0)))))))), 1'(1(1(1(0(1(0(z0))))))), 1'(1(1(0(1(0(z0)))))), 1'(1(0(1(0(z0)))))) 0'(0(0(0(1(0(1(0(0(z0))))))))) -> c4(0'(1(1(0(0(0(1(1(1(z0))))))))), 1'(1(1(1(0(1(0(0(z0)))))))), 1'(1(1(0(1(0(0(z0))))))), 1'(1(0(1(0(0(z0))))))) 0'(0(0(0(1(0(1(0(0(0(z0)))))))))) -> c4(0'(1(1(0(0(0(0(1(1(1(z0)))))))))), 1'(1(1(1(0(1(0(0(0(z0))))))))), 1'(1(1(0(1(0(0(0(z0)))))))), 1'(1(0(1(0(0(0(z0)))))))) K tuples:none Defined Rule Symbols: encArg_1, 0_1, 1_1 Defined Pair Symbols: 1'_1, 0'_1, ENCODE_1_1, ENCARG_1, ENCODE_0_1 Compound Symbols: c5_4, c4_1, c6_1, c_2, c1_2, c4_4 ---------------------------------------- (69) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ENCODE_1(cons_0(z0)) -> c6(1'(0(encArg(z0)))) by ENCODE_1(cons_0(cons_0(z0))) -> c6(1'(0(0(encArg(z0))))) ENCODE_1(cons_0(cons_1(z0))) -> c6(1'(0(1(encArg(z0))))) ---------------------------------------- (70) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_0(z0)) -> 0(encArg(z0)) encArg(cons_1(z0)) -> 1(encArg(z0)) 0(0(0(0(z0)))) -> 0(1(1(1(z0)))) 1(1(0(1(z0)))) -> 0(0(0(0(z0)))) Tuples: 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) 0'(0(0(0(x0)))) -> c4(1'(1(x0))) ENCODE_1(cons_1(z0)) -> c6(1'(1(encArg(z0)))) ENCARG(cons_0(cons_0(cons_0(z0)))) -> c(0'(0(0(encArg(z0)))), ENCARG(cons_0(cons_0(z0)))) ENCARG(cons_0(cons_0(cons_1(z0)))) -> c(0'(0(1(encArg(z0)))), ENCARG(cons_0(cons_1(z0)))) ENCARG(cons_0(cons_1(cons_0(z0)))) -> c(0'(1(0(encArg(z0)))), ENCARG(cons_1(cons_0(z0)))) ENCARG(cons_0(cons_1(cons_1(z0)))) -> c(0'(1(1(encArg(z0)))), ENCARG(cons_1(cons_1(z0)))) ENCARG(cons_1(cons_0(cons_0(z0)))) -> c1(1'(0(0(encArg(z0)))), ENCARG(cons_0(cons_0(z0)))) ENCARG(cons_1(cons_0(cons_1(z0)))) -> c1(1'(0(1(encArg(z0)))), ENCARG(cons_0(cons_1(z0)))) ENCARG(cons_1(cons_1(cons_0(z0)))) -> c1(1'(1(0(encArg(z0)))), ENCARG(cons_1(cons_0(z0)))) ENCARG(cons_1(cons_1(cons_1(z0)))) -> c1(1'(1(1(encArg(z0)))), ENCARG(cons_1(cons_1(z0)))) 0'(0(0(0(1(0(1(z0))))))) -> c4(0'(1(1(0(1(1(1(z0))))))), 1'(1(1(1(0(1(z0)))))), 1'(1(1(0(1(z0))))), 1'(1(0(1(z0))))) 0'(0(0(0(1(0(1(0(z0)))))))) -> c4(0'(1(1(0(0(1(1(1(z0)))))))), 1'(1(1(1(0(1(0(z0))))))), 1'(1(1(0(1(0(z0)))))), 1'(1(0(1(0(z0)))))) 0'(0(0(0(1(0(1(0(0(z0))))))))) -> c4(0'(1(1(0(0(0(1(1(1(z0))))))))), 1'(1(1(1(0(1(0(0(z0)))))))), 1'(1(1(0(1(0(0(z0))))))), 1'(1(0(1(0(0(z0))))))) 0'(0(0(0(1(0(1(0(0(0(z0)))))))))) -> c4(0'(1(1(0(0(0(0(1(1(1(z0)))))))))), 1'(1(1(1(0(1(0(0(0(z0))))))))), 1'(1(1(0(1(0(0(0(z0)))))))), 1'(1(0(1(0(0(0(z0)))))))) ENCODE_0(cons_0(cons_0(z0))) -> c6(0'(0(0(encArg(z0))))) ENCODE_0(cons_0(cons_1(z0))) -> c6(0'(0(1(encArg(z0))))) ENCODE_0(cons_1(cons_0(z0))) -> c6(0'(1(0(encArg(z0))))) ENCODE_0(cons_1(cons_1(z0))) -> c6(0'(1(1(encArg(z0))))) ENCODE_1(cons_0(cons_0(z0))) -> c6(1'(0(0(encArg(z0))))) ENCODE_1(cons_0(cons_1(z0))) -> c6(1'(0(1(encArg(z0))))) S tuples: 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) 0'(0(0(0(x0)))) -> c4(1'(1(x0))) 0'(0(0(0(1(0(1(z0))))))) -> c4(0'(1(1(0(1(1(1(z0))))))), 1'(1(1(1(0(1(z0)))))), 1'(1(1(0(1(z0))))), 1'(1(0(1(z0))))) 0'(0(0(0(1(0(1(0(z0)))))))) -> c4(0'(1(1(0(0(1(1(1(z0)))))))), 1'(1(1(1(0(1(0(z0))))))), 1'(1(1(0(1(0(z0)))))), 1'(1(0(1(0(z0)))))) 0'(0(0(0(1(0(1(0(0(z0))))))))) -> c4(0'(1(1(0(0(0(1(1(1(z0))))))))), 1'(1(1(1(0(1(0(0(z0)))))))), 1'(1(1(0(1(0(0(z0))))))), 1'(1(0(1(0(0(z0))))))) 0'(0(0(0(1(0(1(0(0(0(z0)))))))))) -> c4(0'(1(1(0(0(0(0(1(1(1(z0)))))))))), 1'(1(1(1(0(1(0(0(0(z0))))))))), 1'(1(1(0(1(0(0(0(z0)))))))), 1'(1(0(1(0(0(0(z0)))))))) K tuples:none Defined Rule Symbols: encArg_1, 0_1, 1_1 Defined Pair Symbols: 1'_1, 0'_1, ENCODE_1_1, ENCARG_1, ENCODE_0_1 Compound Symbols: c5_4, c4_1, c6_1, c_2, c1_2, c4_4 ---------------------------------------- (71) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ENCODE_1(cons_1(z0)) -> c6(1'(1(encArg(z0)))) by ENCODE_1(cons_1(cons_0(z0))) -> c6(1'(1(0(encArg(z0))))) ENCODE_1(cons_1(cons_1(z0))) -> c6(1'(1(1(encArg(z0))))) ---------------------------------------- (72) Obligation: Complexity Dependency Tuples Problem Rules: encArg(cons_0(z0)) -> 0(encArg(z0)) encArg(cons_1(z0)) -> 1(encArg(z0)) 0(0(0(0(z0)))) -> 0(1(1(1(z0)))) 1(1(0(1(z0)))) -> 0(0(0(0(z0)))) Tuples: 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) 0'(0(0(0(x0)))) -> c4(1'(1(x0))) ENCARG(cons_0(cons_0(cons_0(z0)))) -> c(0'(0(0(encArg(z0)))), ENCARG(cons_0(cons_0(z0)))) ENCARG(cons_0(cons_0(cons_1(z0)))) -> c(0'(0(1(encArg(z0)))), ENCARG(cons_0(cons_1(z0)))) ENCARG(cons_0(cons_1(cons_0(z0)))) -> c(0'(1(0(encArg(z0)))), ENCARG(cons_1(cons_0(z0)))) ENCARG(cons_0(cons_1(cons_1(z0)))) -> c(0'(1(1(encArg(z0)))), ENCARG(cons_1(cons_1(z0)))) ENCARG(cons_1(cons_0(cons_0(z0)))) -> c1(1'(0(0(encArg(z0)))), ENCARG(cons_0(cons_0(z0)))) ENCARG(cons_1(cons_0(cons_1(z0)))) -> c1(1'(0(1(encArg(z0)))), ENCARG(cons_0(cons_1(z0)))) ENCARG(cons_1(cons_1(cons_0(z0)))) -> c1(1'(1(0(encArg(z0)))), ENCARG(cons_1(cons_0(z0)))) ENCARG(cons_1(cons_1(cons_1(z0)))) -> c1(1'(1(1(encArg(z0)))), ENCARG(cons_1(cons_1(z0)))) 0'(0(0(0(1(0(1(z0))))))) -> c4(0'(1(1(0(1(1(1(z0))))))), 1'(1(1(1(0(1(z0)))))), 1'(1(1(0(1(z0))))), 1'(1(0(1(z0))))) 0'(0(0(0(1(0(1(0(z0)))))))) -> c4(0'(1(1(0(0(1(1(1(z0)))))))), 1'(1(1(1(0(1(0(z0))))))), 1'(1(1(0(1(0(z0)))))), 1'(1(0(1(0(z0)))))) 0'(0(0(0(1(0(1(0(0(z0))))))))) -> c4(0'(1(1(0(0(0(1(1(1(z0))))))))), 1'(1(1(1(0(1(0(0(z0)))))))), 1'(1(1(0(1(0(0(z0))))))), 1'(1(0(1(0(0(z0))))))) 0'(0(0(0(1(0(1(0(0(0(z0)))))))))) -> c4(0'(1(1(0(0(0(0(1(1(1(z0)))))))))), 1'(1(1(1(0(1(0(0(0(z0))))))))), 1'(1(1(0(1(0(0(0(z0)))))))), 1'(1(0(1(0(0(0(z0)))))))) ENCODE_0(cons_0(cons_0(z0))) -> c6(0'(0(0(encArg(z0))))) ENCODE_0(cons_0(cons_1(z0))) -> c6(0'(0(1(encArg(z0))))) ENCODE_0(cons_1(cons_0(z0))) -> c6(0'(1(0(encArg(z0))))) ENCODE_0(cons_1(cons_1(z0))) -> c6(0'(1(1(encArg(z0))))) ENCODE_1(cons_0(cons_0(z0))) -> c6(1'(0(0(encArg(z0))))) ENCODE_1(cons_0(cons_1(z0))) -> c6(1'(0(1(encArg(z0))))) ENCODE_1(cons_1(cons_0(z0))) -> c6(1'(1(0(encArg(z0))))) ENCODE_1(cons_1(cons_1(z0))) -> c6(1'(1(1(encArg(z0))))) S tuples: 1'(1(0(1(z0)))) -> c5(0'(0(0(0(z0)))), 0'(0(0(z0))), 0'(0(z0)), 0'(z0)) 0'(0(0(0(x0)))) -> c4(1'(1(x0))) 0'(0(0(0(1(0(1(z0))))))) -> c4(0'(1(1(0(1(1(1(z0))))))), 1'(1(1(1(0(1(z0)))))), 1'(1(1(0(1(z0))))), 1'(1(0(1(z0))))) 0'(0(0(0(1(0(1(0(z0)))))))) -> c4(0'(1(1(0(0(1(1(1(z0)))))))), 1'(1(1(1(0(1(0(z0))))))), 1'(1(1(0(1(0(z0)))))), 1'(1(0(1(0(z0)))))) 0'(0(0(0(1(0(1(0(0(z0))))))))) -> c4(0'(1(1(0(0(0(1(1(1(z0))))))))), 1'(1(1(1(0(1(0(0(z0)))))))), 1'(1(1(0(1(0(0(z0))))))), 1'(1(0(1(0(0(z0))))))) 0'(0(0(0(1(0(1(0(0(0(z0)))))))))) -> c4(0'(1(1(0(0(0(0(1(1(1(z0)))))))))), 1'(1(1(1(0(1(0(0(0(z0))))))))), 1'(1(1(0(1(0(0(0(z0)))))))), 1'(1(0(1(0(0(0(z0)))))))) K tuples:none Defined Rule Symbols: encArg_1, 0_1, 1_1 Defined Pair Symbols: 1'_1, 0'_1, ENCARG_1, ENCODE_0_1, ENCODE_1_1 Compound Symbols: c5_4, c4_1, c_2, c1_2, c4_4, c6_1