/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(EXP, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 310 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [FINISHED, 0 ms] (8) BOUNDS(EXP, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) if(true, x, y) -> x if(false, x, y) -> y minsort(nil) -> nil minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y)))) min(x, nil) -> x min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z)) del(x, nil) -> nil del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(true) -> true encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_minsort(x_1)) -> minsort(encArg(x_1)) encArg(cons_min(x_1, x_2)) -> min(encArg(x_1), encArg(x_2)) encArg(cons_del(x_1, x_2)) -> del(encArg(x_1), encArg(x_2)) encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_minsort(x_1) -> minsort(encArg(x_1)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_min(x_1, x_2) -> min(encArg(x_1), encArg(x_2)) encode_del(x_1, x_2) -> del(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) if(true, x, y) -> x if(false, x, y) -> y minsort(nil) -> nil minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y)))) min(x, nil) -> x min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z)) del(x, nil) -> nil del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(true) -> true encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_minsort(x_1)) -> minsort(encArg(x_1)) encArg(cons_min(x_1, x_2)) -> min(encArg(x_1), encArg(x_2)) encArg(cons_del(x_1, x_2)) -> del(encArg(x_1), encArg(x_2)) encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_minsort(x_1) -> minsort(encArg(x_1)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_min(x_1, x_2) -> min(encArg(x_1), encArg(x_2)) encode_del(x_1, x_2) -> del(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) if(true, x, y) -> x if(false, x, y) -> y minsort(nil) -> nil minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y)))) min(x, nil) -> x min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z)) del(x, nil) -> nil del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(true) -> true encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_minsort(x_1)) -> minsort(encArg(x_1)) encArg(cons_min(x_1, x_2)) -> min(encArg(x_1), encArg(x_2)) encArg(cons_del(x_1, x_2)) -> del(encArg(x_1), encArg(x_2)) encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_minsort(x_1) -> minsort(encArg(x_1)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_min(x_1, x_2) -> min(encArg(x_1), encArg(x_2)) encode_del(x_1, x_2) -> del(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) if(true, x, y) -> x if(false, x, y) -> y minsort(nil) -> nil minsort(cons(x, y)) -> cons(min(x, y), minsort(del(min(x, y), cons(x, y)))) min(x, nil) -> x min(x, cons(y, z)) -> if(le(x, y), min(x, z), min(y, z)) del(x, nil) -> nil del(x, cons(y, z)) -> if(eq(x, y), z, cons(y, del(x, z))) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(true) -> true encArg(s(x_1)) -> s(encArg(x_1)) encArg(false) -> false encArg(nil) -> nil encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_eq(x_1, x_2)) -> eq(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_minsort(x_1)) -> minsort(encArg(x_1)) encArg(cons_min(x_1, x_2)) -> min(encArg(x_1), encArg(x_2)) encArg(cons_del(x_1, x_2)) -> del(encArg(x_1), encArg(x_2)) encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_true -> true encode_s(x_1) -> s(encArg(x_1)) encode_false -> false encode_eq(x_1, x_2) -> eq(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_minsort(x_1) -> minsort(encArg(x_1)) encode_nil -> nil encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) encode_min(x_1, x_2) -> min(encArg(x_1), encArg(x_2)) encode_del(x_1, x_2) -> del(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (FINISHED) The following loop(s) give(s) rise to the lower bound EXP: The rewrite sequence min(x, cons(y, z)) ->^+ if(le(x, y), min(x, z), min(y, z)) gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. The pumping substitution is [z / cons(y, z)]. The result substitution is [ ]. The rewrite sequence min(x, cons(y, z)) ->^+ if(le(x, y), min(x, z), min(y, z)) gives rise to a decreasing loop by considering the right hand sides subterm at position [2]. The pumping substitution is [z / cons(y, z)]. The result substitution is [x / y]. ---------------------------------------- (8) BOUNDS(EXP, INF)