/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(EXP, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 302 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection (13) DecreasingLoopProof [FINISHED, 515 ms] (14) BOUNDS(EXP, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (innermost) of the given DCpxTrs could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: minus(0, y) -> 0 minus(s(x), 0) -> s(x) minus(s(x), s(y)) -> minus(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) if(true, x, y) -> x if(false, x, y) -> y perfectp(0) -> false perfectp(s(x)) -> f(x, s(0), s(x), s(x)) f(0, y, 0, u) -> true f(0, y, s(z), u) -> false f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u) f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_perfectp(x_1)) -> perfectp(encArg(x_1)) encArg(cons_f(x_1, x_2, x_3, x_4)) -> f(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_perfectp(x_1) -> perfectp(encArg(x_1)) encode_f(x_1, x_2, x_3, x_4) -> f(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: minus(0, y) -> 0 minus(s(x), 0) -> s(x) minus(s(x), s(y)) -> minus(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) if(true, x, y) -> x if(false, x, y) -> y perfectp(0) -> false perfectp(s(x)) -> f(x, s(0), s(x), s(x)) f(0, y, 0, u) -> true f(0, y, s(z), u) -> false f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u) f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_perfectp(x_1)) -> perfectp(encArg(x_1)) encArg(cons_f(x_1, x_2, x_3, x_4)) -> f(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_perfectp(x_1) -> perfectp(encArg(x_1)) encode_f(x_1, x_2, x_3, x_4) -> f(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) Rewrite Strategy: INNERMOST ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: minus(0, y) -> 0 minus(s(x), 0) -> s(x) minus(s(x), s(y)) -> minus(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) if(true, x, y) -> x if(false, x, y) -> y perfectp(0) -> false perfectp(s(x)) -> f(x, s(0), s(x), s(x)) f(0, y, 0, u) -> true f(0, y, s(z), u) -> false f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u) f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_perfectp(x_1)) -> perfectp(encArg(x_1)) encArg(cons_f(x_1, x_2, x_3, x_4)) -> f(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_perfectp(x_1) -> perfectp(encArg(x_1)) encode_f(x_1, x_2, x_3, x_4) -> f(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: minus(0, y) -> 0 minus(s(x), 0) -> s(x) minus(s(x), s(y)) -> minus(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) if(true, x, y) -> x if(false, x, y) -> y perfectp(0) -> false perfectp(s(x)) -> f(x, s(0), s(x), s(x)) f(0, y, 0, u) -> true f(0, y, s(z), u) -> false f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u) f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_perfectp(x_1)) -> perfectp(encArg(x_1)) encArg(cons_f(x_1, x_2, x_3, x_4)) -> f(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_perfectp(x_1) -> perfectp(encArg(x_1)) encode_f(x_1, x_2, x_3, x_4) -> f(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence le(s(x), s(y)) ->^+ le(x, y) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x / s(x), y / s(y)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: minus(0, y) -> 0 minus(s(x), 0) -> s(x) minus(s(x), s(y)) -> minus(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) if(true, x, y) -> x if(false, x, y) -> y perfectp(0) -> false perfectp(s(x)) -> f(x, s(0), s(x), s(x)) f(0, y, 0, u) -> true f(0, y, s(z), u) -> false f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u) f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_perfectp(x_1)) -> perfectp(encArg(x_1)) encArg(cons_f(x_1, x_2, x_3, x_4)) -> f(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_perfectp(x_1) -> perfectp(encArg(x_1)) encode_f(x_1, x_2, x_3, x_4) -> f(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) Rewrite Strategy: INNERMOST ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: minus(0, y) -> 0 minus(s(x), 0) -> s(x) minus(s(x), s(y)) -> minus(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) if(true, x, y) -> x if(false, x, y) -> y perfectp(0) -> false perfectp(s(x)) -> f(x, s(0), s(x), s(x)) f(0, y, 0, u) -> true f(0, y, s(z), u) -> false f(s(x), 0, z, u) -> f(x, u, minus(z, s(x)), u) f(s(x), s(y), z, u) -> if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(true) -> true encArg(false) -> false encArg(cons_minus(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) encArg(cons_le(x_1, x_2)) -> le(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_perfectp(x_1)) -> perfectp(encArg(x_1)) encArg(cons_f(x_1, x_2, x_3, x_4)) -> f(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) encode_minus(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_le(x_1, x_2) -> le(encArg(x_1), encArg(x_2)) encode_true -> true encode_false -> false encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_perfectp(x_1) -> perfectp(encArg(x_1)) encode_f(x_1, x_2, x_3, x_4) -> f(encArg(x_1), encArg(x_2), encArg(x_3), encArg(x_4)) Rewrite Strategy: INNERMOST ---------------------------------------- (13) DecreasingLoopProof (FINISHED) The following loop(s) give(s) rise to the lower bound EXP: The rewrite sequence f(s(s(x1_0)), s(y), z, s(0)) ->^+ if(le(s(x1_0), y), f(s(s(x1_0)), minus(y, s(x1_0)), z, s(0)), if(le(x1_0, 0), f(x1_0, s(0), minus(z, s(x1_0)), s(0)), f(x1_0, s(0), z, s(0)))) gives rise to a decreasing loop by considering the right hand sides subterm at position [2,1]. The pumping substitution is [x1_0 / s(s(x1_0))]. The result substitution is [y / 0, z / minus(z, s(x1_0))]. The rewrite sequence f(s(s(x1_0)), s(y), z, s(0)) ->^+ if(le(s(x1_0), y), f(s(s(x1_0)), minus(y, s(x1_0)), z, s(0)), if(le(x1_0, 0), f(x1_0, s(0), minus(z, s(x1_0)), s(0)), f(x1_0, s(0), z, s(0)))) gives rise to a decreasing loop by considering the right hand sides subterm at position [2,2]. The pumping substitution is [x1_0 / s(s(x1_0))]. The result substitution is [y / 0]. ---------------------------------------- (14) BOUNDS(EXP, INF)