/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxWeightedTrs (3) CpxWeightedTrsRenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTypedWeightedTrs (7) CompletionProof [UPPER BOUND(ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (12) CpxRNTS (13) InliningProof [UPPER BOUND(ID), 0 ms] (14) CpxRNTS (15) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 335 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 118 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 353 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 115 ms] (30) CpxRNTS (31) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 221 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 73 ms] (36) CpxRNTS (37) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 861 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 521 ms] (42) CpxRNTS (43) FinalProof [FINISHED, 0 ms] (44) BOUNDS(1, n^2) (45) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (46) TRS for Loop Detection (47) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (48) BEST (49) proven lower bound (50) LowerBoundPropagationProof [FINISHED, 0 ms] (51) BOUNDS(n^1, INF) (52) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: leq(0, y) -> true leq(s(x), 0) -> false leq(s(x), s(y)) -> leq(x, y) if(true, x, y) -> x if(false, x, y) -> y -(x, 0) -> x -(s(x), s(y)) -> -(x, y) mod(0, y) -> 0 mod(s(x), 0) -> 0 mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: leq(0, y) -> true [1] leq(s(x), 0) -> false [1] leq(s(x), s(y)) -> leq(x, y) [1] if(true, x, y) -> x [1] if(false, x, y) -> y [1] -(x, 0) -> x [1] -(s(x), s(y)) -> -(x, y) [1] mod(0, y) -> 0 [1] mod(s(x), 0) -> 0 [1] mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x)) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) CpxWeightedTrsRenamingProof (BOTH BOUNDS(ID, ID)) Renamed defined symbols to avoid conflicts with arithmetic symbols: - => minus ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: leq(0, y) -> true [1] leq(s(x), 0) -> false [1] leq(s(x), s(y)) -> leq(x, y) [1] if(true, x, y) -> x [1] if(false, x, y) -> y [1] minus(x, 0) -> x [1] minus(s(x), s(y)) -> minus(x, y) [1] mod(0, y) -> 0 [1] mod(s(x), 0) -> 0 [1] mod(s(x), s(y)) -> if(leq(y, x), mod(minus(s(x), s(y)), s(y)), s(x)) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: leq(0, y) -> true [1] leq(s(x), 0) -> false [1] leq(s(x), s(y)) -> leq(x, y) [1] if(true, x, y) -> x [1] if(false, x, y) -> y [1] minus(x, 0) -> x [1] minus(s(x), s(y)) -> minus(x, y) [1] mod(0, y) -> 0 [1] mod(s(x), 0) -> 0 [1] mod(s(x), s(y)) -> if(leq(y, x), mod(minus(s(x), s(y)), s(y)), s(x)) [1] The TRS has the following type information: leq :: 0:s -> 0:s -> true:false 0 :: 0:s true :: true:false s :: 0:s -> 0:s false :: true:false if :: true:false -> 0:s -> 0:s -> 0:s minus :: 0:s -> 0:s -> 0:s mod :: 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (7) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: leq_2 mod_2 minus_2 if_3 Due to the following rules being added: minus(v0, v1) -> 0 [0] And the following fresh constants: none ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: leq(0, y) -> true [1] leq(s(x), 0) -> false [1] leq(s(x), s(y)) -> leq(x, y) [1] if(true, x, y) -> x [1] if(false, x, y) -> y [1] minus(x, 0) -> x [1] minus(s(x), s(y)) -> minus(x, y) [1] mod(0, y) -> 0 [1] mod(s(x), 0) -> 0 [1] mod(s(x), s(y)) -> if(leq(y, x), mod(minus(s(x), s(y)), s(y)), s(x)) [1] minus(v0, v1) -> 0 [0] The TRS has the following type information: leq :: 0:s -> 0:s -> true:false 0 :: 0:s true :: true:false s :: 0:s -> 0:s false :: true:false if :: true:false -> 0:s -> 0:s -> 0:s minus :: 0:s -> 0:s -> 0:s mod :: 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (9) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: leq(0, y) -> true [1] leq(s(x), 0) -> false [1] leq(s(x), s(y)) -> leq(x, y) [1] if(true, x, y) -> x [1] if(false, x, y) -> y [1] minus(x, 0) -> x [1] minus(s(x), s(y)) -> minus(x, y) [1] mod(0, y) -> 0 [1] mod(s(x), 0) -> 0 [1] mod(s(x), s(0)) -> if(true, mod(minus(x, 0), s(0)), s(x)) [3] mod(s(x), s(0)) -> if(true, mod(0, s(0)), s(x)) [2] mod(s(0), s(s(x'))) -> if(false, mod(minus(0, s(x')), s(s(x'))), s(0)) [3] mod(s(0), s(s(x'))) -> if(false, mod(0, s(s(x'))), s(0)) [2] mod(s(s(y')), s(s(x''))) -> if(leq(x'', y'), mod(minus(s(y'), s(x'')), s(s(x''))), s(s(y'))) [3] mod(s(s(y')), s(s(x''))) -> if(leq(x'', y'), mod(0, s(s(x''))), s(s(y'))) [2] minus(v0, v1) -> 0 [0] The TRS has the following type information: leq :: 0:s -> 0:s -> true:false 0 :: 0:s true :: true:false s :: 0:s -> 0:s false :: true:false if :: true:false -> 0:s -> 0:s -> 0:s minus :: 0:s -> 0:s -> 0:s mod :: 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 true => 1 false => 0 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> x :|: z' = x, z'' = y, z = 1, x >= 0, y >= 0 if(z, z', z'') -{ 1 }-> y :|: z' = x, z'' = y, x >= 0, y >= 0, z = 0 leq(z, z') -{ 1 }-> leq(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x leq(z, z') -{ 1 }-> 1 :|: y >= 0, z = 0, z' = y leq(z, z') -{ 1 }-> 0 :|: x >= 0, z = 1 + x, z' = 0 minus(z, z') -{ 1 }-> x :|: x >= 0, z = x, z' = 0 minus(z, z') -{ 1 }-> minus(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x minus(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 mod(z, z') -{ 3 }-> if(leq(x'', y'), mod(minus(1 + y', 1 + x''), 1 + (1 + x'')), 1 + (1 + y')) :|: z' = 1 + (1 + x''), z = 1 + (1 + y'), y' >= 0, x'' >= 0 mod(z, z') -{ 2 }-> if(leq(x'', y'), mod(0, 1 + (1 + x'')), 1 + (1 + y')) :|: z' = 1 + (1 + x''), z = 1 + (1 + y'), y' >= 0, x'' >= 0 mod(z, z') -{ 3 }-> if(1, mod(minus(x, 0), 1 + 0), 1 + x) :|: x >= 0, z' = 1 + 0, z = 1 + x mod(z, z') -{ 2 }-> if(1, mod(0, 1 + 0), 1 + x) :|: x >= 0, z' = 1 + 0, z = 1 + x mod(z, z') -{ 3 }-> if(0, mod(minus(0, 1 + x'), 1 + (1 + x')), 1 + 0) :|: z' = 1 + (1 + x'), z = 1 + 0, x' >= 0 mod(z, z') -{ 2 }-> if(0, mod(0, 1 + (1 + x')), 1 + 0) :|: z' = 1 + (1 + x'), z = 1 + 0, x' >= 0 mod(z, z') -{ 1 }-> 0 :|: y >= 0, z = 0, z' = y mod(z, z') -{ 1 }-> 0 :|: x >= 0, z = 1 + x, z' = 0 ---------------------------------------- (13) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: if(z, z', z'') -{ 1 }-> y :|: z' = x, z'' = y, x >= 0, y >= 0, z = 0 if(z, z', z'') -{ 1 }-> x :|: z' = x, z'' = y, z = 1, x >= 0, y >= 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> x :|: z' = x, z'' = y, z = 1, x >= 0, y >= 0 if(z, z', z'') -{ 1 }-> y :|: z' = x, z'' = y, x >= 0, y >= 0, z = 0 leq(z, z') -{ 1 }-> leq(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x leq(z, z') -{ 1 }-> 1 :|: y >= 0, z = 0, z' = y leq(z, z') -{ 1 }-> 0 :|: x >= 0, z = 1 + x, z' = 0 minus(z, z') -{ 1 }-> x :|: x >= 0, z = x, z' = 0 minus(z, z') -{ 1 }-> minus(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x minus(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 mod(z, z') -{ 3 }-> if(leq(x'', y'), mod(minus(1 + y', 1 + x''), 1 + (1 + x'')), 1 + (1 + y')) :|: z' = 1 + (1 + x''), z = 1 + (1 + y'), y' >= 0, x'' >= 0 mod(z, z') -{ 2 }-> if(leq(x'', y'), mod(0, 1 + (1 + x'')), 1 + (1 + y')) :|: z' = 1 + (1 + x''), z = 1 + (1 + y'), y' >= 0, x'' >= 0 mod(z, z') -{ 3 }-> if(1, mod(minus(x, 0), 1 + 0), 1 + x) :|: x >= 0, z' = 1 + 0, z = 1 + x mod(z, z') -{ 2 }-> if(1, mod(0, 1 + 0), 1 + x) :|: x >= 0, z' = 1 + 0, z = 1 + x mod(z, z') -{ 3 }-> if(0, mod(minus(0, 1 + x'), 1 + (1 + x')), 1 + 0) :|: z' = 1 + (1 + x'), z = 1 + 0, x' >= 0 mod(z, z') -{ 2 }-> if(0, mod(0, 1 + (1 + x')), 1 + 0) :|: z' = 1 + (1 + x'), z = 1 + 0, x' >= 0 mod(z, z') -{ 1 }-> 0 :|: y >= 0, z = 0, z' = y mod(z, z') -{ 1 }-> 0 :|: x >= 0, z = 1 + x, z' = 0 ---------------------------------------- (15) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 leq(z, z') -{ 1 }-> leq(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 leq(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 mod(z, z') -{ 3 }-> if(leq(z' - 2, z - 2), mod(minus(1 + (z - 2), 1 + (z' - 2)), 1 + (1 + (z' - 2))), 1 + (1 + (z - 2))) :|: z - 2 >= 0, z' - 2 >= 0 mod(z, z') -{ 2 }-> if(leq(z' - 2, z - 2), mod(0, 1 + (1 + (z' - 2))), 1 + (1 + (z - 2))) :|: z - 2 >= 0, z' - 2 >= 0 mod(z, z') -{ 3 }-> if(1, mod(minus(z - 1, 0), 1 + 0), 1 + (z - 1)) :|: z - 1 >= 0, z' = 1 + 0 mod(z, z') -{ 2 }-> if(1, mod(0, 1 + 0), 1 + (z - 1)) :|: z - 1 >= 0, z' = 1 + 0 mod(z, z') -{ 3 }-> if(0, mod(minus(0, 1 + (z' - 2)), 1 + (1 + (z' - 2))), 1 + 0) :|: z = 1 + 0, z' - 2 >= 0 mod(z, z') -{ 2 }-> if(0, mod(0, 1 + (1 + (z' - 2))), 1 + 0) :|: z = 1 + 0, z' - 2 >= 0 mod(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 mod(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 ---------------------------------------- (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { minus } { leq } { if } { mod } ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 leq(z, z') -{ 1 }-> leq(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 leq(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 mod(z, z') -{ 3 }-> if(leq(z' - 2, z - 2), mod(minus(1 + (z - 2), 1 + (z' - 2)), 1 + (1 + (z' - 2))), 1 + (1 + (z - 2))) :|: z - 2 >= 0, z' - 2 >= 0 mod(z, z') -{ 2 }-> if(leq(z' - 2, z - 2), mod(0, 1 + (1 + (z' - 2))), 1 + (1 + (z - 2))) :|: z - 2 >= 0, z' - 2 >= 0 mod(z, z') -{ 3 }-> if(1, mod(minus(z - 1, 0), 1 + 0), 1 + (z - 1)) :|: z - 1 >= 0, z' = 1 + 0 mod(z, z') -{ 2 }-> if(1, mod(0, 1 + 0), 1 + (z - 1)) :|: z - 1 >= 0, z' = 1 + 0 mod(z, z') -{ 3 }-> if(0, mod(minus(0, 1 + (z' - 2)), 1 + (1 + (z' - 2))), 1 + 0) :|: z = 1 + 0, z' - 2 >= 0 mod(z, z') -{ 2 }-> if(0, mod(0, 1 + (1 + (z' - 2))), 1 + 0) :|: z = 1 + 0, z' - 2 >= 0 mod(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 mod(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 Function symbols to be analyzed: {minus}, {leq}, {if}, {mod} ---------------------------------------- (19) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 leq(z, z') -{ 1 }-> leq(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 leq(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 mod(z, z') -{ 3 }-> if(leq(z' - 2, z - 2), mod(minus(1 + (z - 2), 1 + (z' - 2)), 1 + (1 + (z' - 2))), 1 + (1 + (z - 2))) :|: z - 2 >= 0, z' - 2 >= 0 mod(z, z') -{ 2 }-> if(leq(z' - 2, z - 2), mod(0, 1 + (1 + (z' - 2))), 1 + (1 + (z - 2))) :|: z - 2 >= 0, z' - 2 >= 0 mod(z, z') -{ 3 }-> if(1, mod(minus(z - 1, 0), 1 + 0), 1 + (z - 1)) :|: z - 1 >= 0, z' = 1 + 0 mod(z, z') -{ 2 }-> if(1, mod(0, 1 + 0), 1 + (z - 1)) :|: z - 1 >= 0, z' = 1 + 0 mod(z, z') -{ 3 }-> if(0, mod(minus(0, 1 + (z' - 2)), 1 + (1 + (z' - 2))), 1 + 0) :|: z = 1 + 0, z' - 2 >= 0 mod(z, z') -{ 2 }-> if(0, mod(0, 1 + (1 + (z' - 2))), 1 + 0) :|: z = 1 + 0, z' - 2 >= 0 mod(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 mod(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 Function symbols to be analyzed: {minus}, {leq}, {if}, {mod} ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: minus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 leq(z, z') -{ 1 }-> leq(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 leq(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 mod(z, z') -{ 3 }-> if(leq(z' - 2, z - 2), mod(minus(1 + (z - 2), 1 + (z' - 2)), 1 + (1 + (z' - 2))), 1 + (1 + (z - 2))) :|: z - 2 >= 0, z' - 2 >= 0 mod(z, z') -{ 2 }-> if(leq(z' - 2, z - 2), mod(0, 1 + (1 + (z' - 2))), 1 + (1 + (z - 2))) :|: z - 2 >= 0, z' - 2 >= 0 mod(z, z') -{ 3 }-> if(1, mod(minus(z - 1, 0), 1 + 0), 1 + (z - 1)) :|: z - 1 >= 0, z' = 1 + 0 mod(z, z') -{ 2 }-> if(1, mod(0, 1 + 0), 1 + (z - 1)) :|: z - 1 >= 0, z' = 1 + 0 mod(z, z') -{ 3 }-> if(0, mod(minus(0, 1 + (z' - 2)), 1 + (1 + (z' - 2))), 1 + 0) :|: z = 1 + 0, z' - 2 >= 0 mod(z, z') -{ 2 }-> if(0, mod(0, 1 + (1 + (z' - 2))), 1 + 0) :|: z = 1 + 0, z' - 2 >= 0 mod(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 mod(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 Function symbols to be analyzed: {minus}, {leq}, {if}, {mod} Previous analysis results are: minus: runtime: ?, size: O(n^1) [z] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: minus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 leq(z, z') -{ 1 }-> leq(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 leq(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 mod(z, z') -{ 3 }-> if(leq(z' - 2, z - 2), mod(minus(1 + (z - 2), 1 + (z' - 2)), 1 + (1 + (z' - 2))), 1 + (1 + (z - 2))) :|: z - 2 >= 0, z' - 2 >= 0 mod(z, z') -{ 2 }-> if(leq(z' - 2, z - 2), mod(0, 1 + (1 + (z' - 2))), 1 + (1 + (z - 2))) :|: z - 2 >= 0, z' - 2 >= 0 mod(z, z') -{ 3 }-> if(1, mod(minus(z - 1, 0), 1 + 0), 1 + (z - 1)) :|: z - 1 >= 0, z' = 1 + 0 mod(z, z') -{ 2 }-> if(1, mod(0, 1 + 0), 1 + (z - 1)) :|: z - 1 >= 0, z' = 1 + 0 mod(z, z') -{ 3 }-> if(0, mod(minus(0, 1 + (z' - 2)), 1 + (1 + (z' - 2))), 1 + 0) :|: z = 1 + 0, z' - 2 >= 0 mod(z, z') -{ 2 }-> if(0, mod(0, 1 + (1 + (z' - 2))), 1 + 0) :|: z = 1 + 0, z' - 2 >= 0 mod(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 mod(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 Function symbols to be analyzed: {leq}, {if}, {mod} Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 leq(z, z') -{ 1 }-> leq(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 leq(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 mod(z, z') -{ 3 + z' }-> if(leq(z' - 2, z - 2), mod(s1, 1 + (1 + (z' - 2))), 1 + (1 + (z - 2))) :|: s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0, z' - 2 >= 0 mod(z, z') -{ 2 }-> if(leq(z' - 2, z - 2), mod(0, 1 + (1 + (z' - 2))), 1 + (1 + (z - 2))) :|: z - 2 >= 0, z' - 2 >= 0 mod(z, z') -{ 4 }-> if(1, mod(s', 1 + 0), 1 + (z - 1)) :|: s' >= 0, s' <= z - 1, z - 1 >= 0, z' = 1 + 0 mod(z, z') -{ 2 }-> if(1, mod(0, 1 + 0), 1 + (z - 1)) :|: z - 1 >= 0, z' = 1 + 0 mod(z, z') -{ 3 + z' }-> if(0, mod(s'', 1 + (1 + (z' - 2))), 1 + 0) :|: s'' >= 0, s'' <= 0, z = 1 + 0, z' - 2 >= 0 mod(z, z') -{ 2 }-> if(0, mod(0, 1 + (1 + (z' - 2))), 1 + 0) :|: z = 1 + 0, z' - 2 >= 0 mod(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 mod(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 Function symbols to be analyzed: {leq}, {if}, {mod} Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: leq after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 leq(z, z') -{ 1 }-> leq(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 leq(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 mod(z, z') -{ 3 + z' }-> if(leq(z' - 2, z - 2), mod(s1, 1 + (1 + (z' - 2))), 1 + (1 + (z - 2))) :|: s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0, z' - 2 >= 0 mod(z, z') -{ 2 }-> if(leq(z' - 2, z - 2), mod(0, 1 + (1 + (z' - 2))), 1 + (1 + (z - 2))) :|: z - 2 >= 0, z' - 2 >= 0 mod(z, z') -{ 4 }-> if(1, mod(s', 1 + 0), 1 + (z - 1)) :|: s' >= 0, s' <= z - 1, z - 1 >= 0, z' = 1 + 0 mod(z, z') -{ 2 }-> if(1, mod(0, 1 + 0), 1 + (z - 1)) :|: z - 1 >= 0, z' = 1 + 0 mod(z, z') -{ 3 + z' }-> if(0, mod(s'', 1 + (1 + (z' - 2))), 1 + 0) :|: s'' >= 0, s'' <= 0, z = 1 + 0, z' - 2 >= 0 mod(z, z') -{ 2 }-> if(0, mod(0, 1 + (1 + (z' - 2))), 1 + 0) :|: z = 1 + 0, z' - 2 >= 0 mod(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 mod(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 Function symbols to be analyzed: {leq}, {if}, {mod} Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] leq: runtime: ?, size: O(1) [1] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: leq after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z' ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 leq(z, z') -{ 1 }-> leq(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 leq(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 mod(z, z') -{ 3 + z' }-> if(leq(z' - 2, z - 2), mod(s1, 1 + (1 + (z' - 2))), 1 + (1 + (z - 2))) :|: s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0, z' - 2 >= 0 mod(z, z') -{ 2 }-> if(leq(z' - 2, z - 2), mod(0, 1 + (1 + (z' - 2))), 1 + (1 + (z - 2))) :|: z - 2 >= 0, z' - 2 >= 0 mod(z, z') -{ 4 }-> if(1, mod(s', 1 + 0), 1 + (z - 1)) :|: s' >= 0, s' <= z - 1, z - 1 >= 0, z' = 1 + 0 mod(z, z') -{ 2 }-> if(1, mod(0, 1 + 0), 1 + (z - 1)) :|: z - 1 >= 0, z' = 1 + 0 mod(z, z') -{ 3 + z' }-> if(0, mod(s'', 1 + (1 + (z' - 2))), 1 + 0) :|: s'' >= 0, s'' <= 0, z = 1 + 0, z' - 2 >= 0 mod(z, z') -{ 2 }-> if(0, mod(0, 1 + (1 + (z' - 2))), 1 + 0) :|: z = 1 + 0, z' - 2 >= 0 mod(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 mod(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 Function symbols to be analyzed: {if}, {mod} Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] leq: runtime: O(n^1) [2 + z'], size: O(1) [1] ---------------------------------------- (31) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 leq(z, z') -{ 2 + z' }-> s2 :|: s2 >= 0, s2 <= 1, z - 1 >= 0, z' - 1 >= 0 leq(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 mod(z, z') -{ 3 + z + z' }-> if(s3, mod(s1, 1 + (1 + (z' - 2))), 1 + (1 + (z - 2))) :|: s3 >= 0, s3 <= 1, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0, z' - 2 >= 0 mod(z, z') -{ 2 + z }-> if(s4, mod(0, 1 + (1 + (z' - 2))), 1 + (1 + (z - 2))) :|: s4 >= 0, s4 <= 1, z - 2 >= 0, z' - 2 >= 0 mod(z, z') -{ 4 }-> if(1, mod(s', 1 + 0), 1 + (z - 1)) :|: s' >= 0, s' <= z - 1, z - 1 >= 0, z' = 1 + 0 mod(z, z') -{ 2 }-> if(1, mod(0, 1 + 0), 1 + (z - 1)) :|: z - 1 >= 0, z' = 1 + 0 mod(z, z') -{ 3 + z' }-> if(0, mod(s'', 1 + (1 + (z' - 2))), 1 + 0) :|: s'' >= 0, s'' <= 0, z = 1 + 0, z' - 2 >= 0 mod(z, z') -{ 2 }-> if(0, mod(0, 1 + (1 + (z' - 2))), 1 + 0) :|: z = 1 + 0, z' - 2 >= 0 mod(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 mod(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 Function symbols to be analyzed: {if}, {mod} Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] leq: runtime: O(n^1) [2 + z'], size: O(1) [1] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: if after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' + z'' ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 leq(z, z') -{ 2 + z' }-> s2 :|: s2 >= 0, s2 <= 1, z - 1 >= 0, z' - 1 >= 0 leq(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 mod(z, z') -{ 3 + z + z' }-> if(s3, mod(s1, 1 + (1 + (z' - 2))), 1 + (1 + (z - 2))) :|: s3 >= 0, s3 <= 1, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0, z' - 2 >= 0 mod(z, z') -{ 2 + z }-> if(s4, mod(0, 1 + (1 + (z' - 2))), 1 + (1 + (z - 2))) :|: s4 >= 0, s4 <= 1, z - 2 >= 0, z' - 2 >= 0 mod(z, z') -{ 4 }-> if(1, mod(s', 1 + 0), 1 + (z - 1)) :|: s' >= 0, s' <= z - 1, z - 1 >= 0, z' = 1 + 0 mod(z, z') -{ 2 }-> if(1, mod(0, 1 + 0), 1 + (z - 1)) :|: z - 1 >= 0, z' = 1 + 0 mod(z, z') -{ 3 + z' }-> if(0, mod(s'', 1 + (1 + (z' - 2))), 1 + 0) :|: s'' >= 0, s'' <= 0, z = 1 + 0, z' - 2 >= 0 mod(z, z') -{ 2 }-> if(0, mod(0, 1 + (1 + (z' - 2))), 1 + 0) :|: z = 1 + 0, z' - 2 >= 0 mod(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 mod(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 Function symbols to be analyzed: {if}, {mod} Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] leq: runtime: O(n^1) [2 + z'], size: O(1) [1] if: runtime: ?, size: O(n^1) [z' + z''] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: if after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 leq(z, z') -{ 2 + z' }-> s2 :|: s2 >= 0, s2 <= 1, z - 1 >= 0, z' - 1 >= 0 leq(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 mod(z, z') -{ 3 + z + z' }-> if(s3, mod(s1, 1 + (1 + (z' - 2))), 1 + (1 + (z - 2))) :|: s3 >= 0, s3 <= 1, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0, z' - 2 >= 0 mod(z, z') -{ 2 + z }-> if(s4, mod(0, 1 + (1 + (z' - 2))), 1 + (1 + (z - 2))) :|: s4 >= 0, s4 <= 1, z - 2 >= 0, z' - 2 >= 0 mod(z, z') -{ 4 }-> if(1, mod(s', 1 + 0), 1 + (z - 1)) :|: s' >= 0, s' <= z - 1, z - 1 >= 0, z' = 1 + 0 mod(z, z') -{ 2 }-> if(1, mod(0, 1 + 0), 1 + (z - 1)) :|: z - 1 >= 0, z' = 1 + 0 mod(z, z') -{ 3 + z' }-> if(0, mod(s'', 1 + (1 + (z' - 2))), 1 + 0) :|: s'' >= 0, s'' <= 0, z = 1 + 0, z' - 2 >= 0 mod(z, z') -{ 2 }-> if(0, mod(0, 1 + (1 + (z' - 2))), 1 + 0) :|: z = 1 + 0, z' - 2 >= 0 mod(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 mod(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 Function symbols to be analyzed: {mod} Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] leq: runtime: O(n^1) [2 + z'], size: O(1) [1] if: runtime: O(1) [1], size: O(n^1) [z' + z''] ---------------------------------------- (37) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 leq(z, z') -{ 2 + z' }-> s2 :|: s2 >= 0, s2 <= 1, z - 1 >= 0, z' - 1 >= 0 leq(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 mod(z, z') -{ 3 + z + z' }-> if(s3, mod(s1, 1 + (1 + (z' - 2))), 1 + (1 + (z - 2))) :|: s3 >= 0, s3 <= 1, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0, z' - 2 >= 0 mod(z, z') -{ 2 + z }-> if(s4, mod(0, 1 + (1 + (z' - 2))), 1 + (1 + (z - 2))) :|: s4 >= 0, s4 <= 1, z - 2 >= 0, z' - 2 >= 0 mod(z, z') -{ 4 }-> if(1, mod(s', 1 + 0), 1 + (z - 1)) :|: s' >= 0, s' <= z - 1, z - 1 >= 0, z' = 1 + 0 mod(z, z') -{ 2 }-> if(1, mod(0, 1 + 0), 1 + (z - 1)) :|: z - 1 >= 0, z' = 1 + 0 mod(z, z') -{ 3 + z' }-> if(0, mod(s'', 1 + (1 + (z' - 2))), 1 + 0) :|: s'' >= 0, s'' <= 0, z = 1 + 0, z' - 2 >= 0 mod(z, z') -{ 2 }-> if(0, mod(0, 1 + (1 + (z' - 2))), 1 + 0) :|: z = 1 + 0, z' - 2 >= 0 mod(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 mod(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 Function symbols to be analyzed: {mod} Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] leq: runtime: O(n^1) [2 + z'], size: O(1) [1] if: runtime: O(1) [1], size: O(n^1) [z' + z''] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: mod after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 1 + z + z^2 ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 leq(z, z') -{ 2 + z' }-> s2 :|: s2 >= 0, s2 <= 1, z - 1 >= 0, z' - 1 >= 0 leq(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 mod(z, z') -{ 3 + z + z' }-> if(s3, mod(s1, 1 + (1 + (z' - 2))), 1 + (1 + (z - 2))) :|: s3 >= 0, s3 <= 1, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0, z' - 2 >= 0 mod(z, z') -{ 2 + z }-> if(s4, mod(0, 1 + (1 + (z' - 2))), 1 + (1 + (z - 2))) :|: s4 >= 0, s4 <= 1, z - 2 >= 0, z' - 2 >= 0 mod(z, z') -{ 4 }-> if(1, mod(s', 1 + 0), 1 + (z - 1)) :|: s' >= 0, s' <= z - 1, z - 1 >= 0, z' = 1 + 0 mod(z, z') -{ 2 }-> if(1, mod(0, 1 + 0), 1 + (z - 1)) :|: z - 1 >= 0, z' = 1 + 0 mod(z, z') -{ 3 + z' }-> if(0, mod(s'', 1 + (1 + (z' - 2))), 1 + 0) :|: s'' >= 0, s'' <= 0, z = 1 + 0, z' - 2 >= 0 mod(z, z') -{ 2 }-> if(0, mod(0, 1 + (1 + (z' - 2))), 1 + 0) :|: z = 1 + 0, z' - 2 >= 0 mod(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 mod(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 Function symbols to be analyzed: {mod} Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] leq: runtime: O(n^1) [2 + z'], size: O(1) [1] if: runtime: O(1) [1], size: O(n^1) [z' + z''] mod: runtime: ?, size: O(n^2) [1 + z + z^2] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: mod after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 13 + 7*z + z*z' + z^2 + 3*z' ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 leq(z, z') -{ 2 + z' }-> s2 :|: s2 >= 0, s2 <= 1, z - 1 >= 0, z' - 1 >= 0 leq(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 mod(z, z') -{ 3 + z + z' }-> if(s3, mod(s1, 1 + (1 + (z' - 2))), 1 + (1 + (z - 2))) :|: s3 >= 0, s3 <= 1, s1 >= 0, s1 <= 1 + (z - 2), z - 2 >= 0, z' - 2 >= 0 mod(z, z') -{ 2 + z }-> if(s4, mod(0, 1 + (1 + (z' - 2))), 1 + (1 + (z - 2))) :|: s4 >= 0, s4 <= 1, z - 2 >= 0, z' - 2 >= 0 mod(z, z') -{ 4 }-> if(1, mod(s', 1 + 0), 1 + (z - 1)) :|: s' >= 0, s' <= z - 1, z - 1 >= 0, z' = 1 + 0 mod(z, z') -{ 2 }-> if(1, mod(0, 1 + 0), 1 + (z - 1)) :|: z - 1 >= 0, z' = 1 + 0 mod(z, z') -{ 3 + z' }-> if(0, mod(s'', 1 + (1 + (z' - 2))), 1 + 0) :|: s'' >= 0, s'' <= 0, z = 1 + 0, z' - 2 >= 0 mod(z, z') -{ 2 }-> if(0, mod(0, 1 + (1 + (z' - 2))), 1 + 0) :|: z = 1 + 0, z' - 2 >= 0 mod(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 mod(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 Function symbols to be analyzed: Previous analysis results are: minus: runtime: O(n^1) [1 + z'], size: O(n^1) [z] leq: runtime: O(n^1) [2 + z'], size: O(1) [1] if: runtime: O(1) [1], size: O(n^1) [z' + z''] mod: runtime: O(n^2) [13 + 7*z + z*z' + z^2 + 3*z'], size: O(n^2) [1 + z + z^2] ---------------------------------------- (43) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (44) BOUNDS(1, n^2) ---------------------------------------- (45) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (46) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: leq(0, y) -> true leq(s(x), 0) -> false leq(s(x), s(y)) -> leq(x, y) if(true, x, y) -> x if(false, x, y) -> y -(x, 0) -> x -(s(x), s(y)) -> -(x, y) mod(0, y) -> 0 mod(s(x), 0) -> 0 mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (47) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence -(s(x), s(y)) ->^+ -(x, y) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x / s(x), y / s(y)]. The result substitution is [ ]. ---------------------------------------- (48) Complex Obligation (BEST) ---------------------------------------- (49) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: leq(0, y) -> true leq(s(x), 0) -> false leq(s(x), s(y)) -> leq(x, y) if(true, x, y) -> x if(false, x, y) -> y -(x, 0) -> x -(s(x), s(y)) -> -(x, y) mod(0, y) -> 0 mod(s(x), 0) -> 0 mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (50) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (51) BOUNDS(n^1, INF) ---------------------------------------- (52) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: leq(0, y) -> true leq(s(x), 0) -> false leq(s(x), s(y)) -> leq(x, y) if(true, x, y) -> x if(false, x, y) -> y -(x, 0) -> x -(s(x), s(y)) -> -(x, y) mod(0, y) -> 0 mod(s(x), 0) -> 0 mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x)) S is empty. Rewrite Strategy: INNERMOST