/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) CpxTrsMatchBoundsTAProof [FINISHED, 0 ms] (4) BOUNDS(1, n^1) (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTRS (7) SlicingProof [LOWER BOUND(ID), 0 ms] (8) CpxTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 432 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 100 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 90 ms] (22) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: g(f(x), y) -> f(h(x, y)) h(x, y) -> g(x, f(y)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: g(f(x), y) -> f(h(x, y)) h(x, y) -> g(x, f(y)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2] transitions: f0(0) -> 0 g0(0, 0) -> 1 h0(0, 0) -> 2 h1(0, 0) -> 3 f1(3) -> 1 f1(0) -> 4 g1(0, 4) -> 2 h1(0, 4) -> 3 f1(3) -> 2 f2(0) -> 5 g2(0, 5) -> 3 f2(4) -> 5 h1(0, 5) -> 3 f1(3) -> 3 f2(5) -> 5 ---------------------------------------- (4) BOUNDS(1, n^1) ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: g(f(x), y) -> f(h(x, y)) h(x, y) -> g(x, f(y)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (7) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: g/1 h/1 ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: g(f(x)) -> f(h(x)) h(x) -> g(x) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: Innermost TRS: Rules: g(f(x)) -> f(h(x)) h(x) -> g(x) Types: g :: f -> f f :: f -> f h :: f -> f hole_f1_0 :: f gen_f2_0 :: Nat -> f ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: g, h They will be analysed ascendingly in the following order: g = h ---------------------------------------- (12) Obligation: Innermost TRS: Rules: g(f(x)) -> f(h(x)) h(x) -> g(x) Types: g :: f -> f f :: f -> f h :: f -> f hole_f1_0 :: f gen_f2_0 :: Nat -> f Generator Equations: gen_f2_0(0) <=> hole_f1_0 gen_f2_0(+(x, 1)) <=> f(gen_f2_0(x)) The following defined symbols remain to be analysed: h, g They will be analysed ascendingly in the following order: g = h ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: h(gen_f2_0(n4_0)) -> *3_0, rt in Omega(n4_0) Induction Base: h(gen_f2_0(0)) Induction Step: h(gen_f2_0(+(n4_0, 1))) ->_R^Omega(1) g(gen_f2_0(+(n4_0, 1))) ->_R^Omega(1) f(h(gen_f2_0(n4_0))) ->_IH f(*3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: g(f(x)) -> f(h(x)) h(x) -> g(x) Types: g :: f -> f f :: f -> f h :: f -> f hole_f1_0 :: f gen_f2_0 :: Nat -> f Generator Equations: gen_f2_0(0) <=> hole_f1_0 gen_f2_0(+(x, 1)) <=> f(gen_f2_0(x)) The following defined symbols remain to be analysed: h, g They will be analysed ascendingly in the following order: g = h ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: Innermost TRS: Rules: g(f(x)) -> f(h(x)) h(x) -> g(x) Types: g :: f -> f f :: f -> f h :: f -> f hole_f1_0 :: f gen_f2_0 :: Nat -> f Lemmas: h(gen_f2_0(n4_0)) -> *3_0, rt in Omega(n4_0) Generator Equations: gen_f2_0(0) <=> hole_f1_0 gen_f2_0(+(x, 1)) <=> f(gen_f2_0(x)) The following defined symbols remain to be analysed: g They will be analysed ascendingly in the following order: g = h ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: g(gen_f2_0(+(1, n121_0))) -> *3_0, rt in Omega(n121_0) Induction Base: g(gen_f2_0(+(1, 0))) Induction Step: g(gen_f2_0(+(1, +(n121_0, 1)))) ->_R^Omega(1) f(h(gen_f2_0(+(1, n121_0)))) ->_R^Omega(1) f(g(gen_f2_0(+(1, n121_0)))) ->_IH f(*3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: Innermost TRS: Rules: g(f(x)) -> f(h(x)) h(x) -> g(x) Types: g :: f -> f f :: f -> f h :: f -> f hole_f1_0 :: f gen_f2_0 :: Nat -> f Lemmas: h(gen_f2_0(n4_0)) -> *3_0, rt in Omega(n4_0) g(gen_f2_0(+(1, n121_0))) -> *3_0, rt in Omega(n121_0) Generator Equations: gen_f2_0(0) <=> hole_f1_0 gen_f2_0(+(x, 1)) <=> f(gen_f2_0(x)) The following defined symbols remain to be analysed: h They will be analysed ascendingly in the following order: g = h ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: h(gen_f2_0(n355_0)) -> *3_0, rt in Omega(n355_0) Induction Base: h(gen_f2_0(0)) Induction Step: h(gen_f2_0(+(n355_0, 1))) ->_R^Omega(1) g(gen_f2_0(+(n355_0, 1))) ->_R^Omega(1) f(h(gen_f2_0(n355_0))) ->_IH f(*3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) BOUNDS(1, INF)