/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 3 ms] (8) CpxRNTS (9) CompleteCoflocoProof [FINISHED, 360 ms] (10) BOUNDS(1, n^1) (11) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTRS (13) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (14) typed CpxTrs (15) OrderProof [LOWER BOUND(ID), 0 ms] (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 261 ms] (18) BEST (19) proven lower bound (20) LowerBoundPropagationProof [FINISHED, 0 ms] (21) BOUNDS(n^1, INF) (22) typed CpxTrs (23) RewriteLemmaProof [LOWER BOUND(ID), 78 ms] (24) typed CpxTrs (25) RewriteLemmaProof [LOWER BOUND(ID), 61 ms] (26) typed CpxTrs (27) RewriteLemmaProof [LOWER BOUND(ID), 3 ms] (28) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: append(@l1, @l2) -> append#1(@l1, @l2) append#1(::(@x, @xs), @l2) -> ::(@x, append(@xs, @l2)) append#1(nil, @l2) -> @l2 appendAll(@l) -> appendAll#1(@l) appendAll#1(::(@l1, @ls)) -> append(@l1, appendAll(@ls)) appendAll#1(nil) -> nil appendAll2(@l) -> appendAll2#1(@l) appendAll2#1(::(@l1, @ls)) -> append(appendAll(@l1), appendAll2(@ls)) appendAll2#1(nil) -> nil appendAll3(@l) -> appendAll3#1(@l) appendAll3#1(::(@l1, @ls)) -> append(appendAll2(@l1), appendAll3(@ls)) appendAll3#1(nil) -> nil S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: append(@l1, @l2) -> append#1(@l1, @l2) [1] append#1(::(@x, @xs), @l2) -> ::(@x, append(@xs, @l2)) [1] append#1(nil, @l2) -> @l2 [1] appendAll(@l) -> appendAll#1(@l) [1] appendAll#1(::(@l1, @ls)) -> append(@l1, appendAll(@ls)) [1] appendAll#1(nil) -> nil [1] appendAll2(@l) -> appendAll2#1(@l) [1] appendAll2#1(::(@l1, @ls)) -> append(appendAll(@l1), appendAll2(@ls)) [1] appendAll2#1(nil) -> nil [1] appendAll3(@l) -> appendAll3#1(@l) [1] appendAll3#1(::(@l1, @ls)) -> append(appendAll2(@l1), appendAll3(@ls)) [1] appendAll3#1(nil) -> nil [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: append(@l1, @l2) -> append#1(@l1, @l2) [1] append#1(::(@x, @xs), @l2) -> ::(@x, append(@xs, @l2)) [1] append#1(nil, @l2) -> @l2 [1] appendAll(@l) -> appendAll#1(@l) [1] appendAll#1(::(@l1, @ls)) -> append(@l1, appendAll(@ls)) [1] appendAll#1(nil) -> nil [1] appendAll2(@l) -> appendAll2#1(@l) [1] appendAll2#1(::(@l1, @ls)) -> append(appendAll(@l1), appendAll2(@ls)) [1] appendAll2#1(nil) -> nil [1] appendAll3(@l) -> appendAll3#1(@l) [1] appendAll3#1(::(@l1, @ls)) -> append(appendAll2(@l1), appendAll3(@ls)) [1] appendAll3#1(nil) -> nil [1] The TRS has the following type information: append :: :::nil -> :::nil -> :::nil append#1 :: :::nil -> :::nil -> :::nil :: :: :::nil -> :::nil -> :::nil nil :: :::nil appendAll :: :::nil -> :::nil appendAll#1 :: :::nil -> :::nil appendAll2 :: :::nil -> :::nil appendAll2#1 :: :::nil -> :::nil appendAll3 :: :::nil -> :::nil appendAll3#1 :: :::nil -> :::nil Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: none And the following fresh constants: none ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: append(@l1, @l2) -> append#1(@l1, @l2) [1] append#1(::(@x, @xs), @l2) -> ::(@x, append(@xs, @l2)) [1] append#1(nil, @l2) -> @l2 [1] appendAll(@l) -> appendAll#1(@l) [1] appendAll#1(::(@l1, @ls)) -> append(@l1, appendAll(@ls)) [1] appendAll#1(nil) -> nil [1] appendAll2(@l) -> appendAll2#1(@l) [1] appendAll2#1(::(@l1, @ls)) -> append(appendAll(@l1), appendAll2(@ls)) [1] appendAll2#1(nil) -> nil [1] appendAll3(@l) -> appendAll3#1(@l) [1] appendAll3#1(::(@l1, @ls)) -> append(appendAll2(@l1), appendAll3(@ls)) [1] appendAll3#1(nil) -> nil [1] The TRS has the following type information: append :: :::nil -> :::nil -> :::nil append#1 :: :::nil -> :::nil -> :::nil :: :: :::nil -> :::nil -> :::nil nil :: :::nil appendAll :: :::nil -> :::nil appendAll#1 :: :::nil -> :::nil appendAll2 :: :::nil -> :::nil appendAll2#1 :: :::nil -> :::nil appendAll3 :: :::nil -> :::nil appendAll3#1 :: :::nil -> :::nil Rewrite Strategy: INNERMOST ---------------------------------------- (7) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: nil => 0 ---------------------------------------- (8) Obligation: Complexity RNTS consisting of the following rules: append(z, z') -{ 1 }-> append#1(@l1, @l2) :|: @l1 >= 0, z' = @l2, @l2 >= 0, z = @l1 append#1(z, z') -{ 1 }-> @l2 :|: z' = @l2, @l2 >= 0, z = 0 append#1(z, z') -{ 1 }-> 1 + @x + append(@xs, @l2) :|: z' = @l2, @x >= 0, z = 1 + @x + @xs, @l2 >= 0, @xs >= 0 appendAll(z) -{ 1 }-> appendAll#1(@l) :|: z = @l, @l >= 0 appendAll#1(z) -{ 1 }-> append(@l1, appendAll(@ls)) :|: @ls >= 0, @l1 >= 0, z = 1 + @l1 + @ls appendAll#1(z) -{ 1 }-> 0 :|: z = 0 appendAll2(z) -{ 1 }-> appendAll2#1(@l) :|: z = @l, @l >= 0 appendAll2#1(z) -{ 1 }-> append(appendAll(@l1), appendAll2(@ls)) :|: @ls >= 0, @l1 >= 0, z = 1 + @l1 + @ls appendAll2#1(z) -{ 1 }-> 0 :|: z = 0 appendAll3(z) -{ 1 }-> appendAll3#1(@l) :|: z = @l, @l >= 0 appendAll3#1(z) -{ 1 }-> append(appendAll2(@l1), appendAll3(@ls)) :|: @ls >= 0, @l1 >= 0, z = 1 + @l1 + @ls appendAll3#1(z) -{ 1 }-> 0 :|: z = 0 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (9) CompleteCoflocoProof (FINISHED) Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: eq(start(V2, V1),0,[append(V2, V1, Out)],[V2 >= 0,V1 >= 0]). eq(start(V2, V1),0,[fun(V2, V1, Out)],[V2 >= 0,V1 >= 0]). eq(start(V2, V1),0,[appendAll(V2, Out)],[V2 >= 0]). eq(start(V2, V1),0,[fun1(V2, Out)],[V2 >= 0]). eq(start(V2, V1),0,[appendAll2(V2, Out)],[V2 >= 0]). eq(start(V2, V1),0,[fun2(V2, Out)],[V2 >= 0]). eq(start(V2, V1),0,[appendAll3(V2, Out)],[V2 >= 0]). eq(start(V2, V1),0,[fun3(V2, Out)],[V2 >= 0]). eq(append(V2, V1, Out),1,[fun(V3, V, Ret)],[Out = Ret,V3 >= 0,V1 = V,V >= 0,V2 = V3]). eq(fun(V2, V1, Out),1,[append(V6, V4, Ret1)],[Out = 1 + Ret1 + V5,V1 = V4,V5 >= 0,V2 = 1 + V5 + V6,V4 >= 0,V6 >= 0]). eq(fun(V2, V1, Out),1,[],[Out = V7,V1 = V7,V7 >= 0,V2 = 0]). eq(appendAll(V2, Out),1,[fun1(V8, Ret2)],[Out = Ret2,V2 = V8,V8 >= 0]). eq(fun1(V2, Out),1,[appendAll(V9, Ret11),append(V10, Ret11, Ret3)],[Out = Ret3,V9 >= 0,V10 >= 0,V2 = 1 + V10 + V9]). eq(fun1(V2, Out),1,[],[Out = 0,V2 = 0]). eq(appendAll2(V2, Out),1,[fun2(V11, Ret4)],[Out = Ret4,V2 = V11,V11 >= 0]). eq(fun2(V2, Out),1,[appendAll(V13, Ret0),appendAll2(V12, Ret12),append(Ret0, Ret12, Ret5)],[Out = Ret5,V12 >= 0,V13 >= 0,V2 = 1 + V12 + V13]). eq(fun2(V2, Out),1,[],[Out = 0,V2 = 0]). eq(appendAll3(V2, Out),1,[fun3(V14, Ret6)],[Out = Ret6,V2 = V14,V14 >= 0]). eq(fun3(V2, Out),1,[appendAll2(V16, Ret01),appendAll3(V15, Ret13),append(Ret01, Ret13, Ret7)],[Out = Ret7,V15 >= 0,V16 >= 0,V2 = 1 + V15 + V16]). eq(fun3(V2, Out),1,[],[Out = 0,V2 = 0]). input_output_vars(append(V2,V1,Out),[V2,V1],[Out]). input_output_vars(fun(V2,V1,Out),[V2,V1],[Out]). input_output_vars(appendAll(V2,Out),[V2],[Out]). input_output_vars(fun1(V2,Out),[V2],[Out]). input_output_vars(appendAll2(V2,Out),[V2],[Out]). input_output_vars(fun2(V2,Out),[V2],[Out]). input_output_vars(appendAll3(V2,Out),[V2],[Out]). input_output_vars(fun3(V2,Out),[V2],[Out]). CoFloCo proof output: Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. recursive : [append/3,fun/3] 1. recursive [non_tail] : [appendAll/2,fun1/2] 2. recursive [non_tail] : [appendAll2/2,fun2/2] 3. recursive [non_tail] : [appendAll3/2,fun3/2] 4. non_recursive : [start/2] #### Obtained direct recursion through partial evaluation 0. SCC is partially evaluated into append/3 1. SCC is partially evaluated into appendAll/2 2. SCC is partially evaluated into appendAll2/2 3. SCC is partially evaluated into fun3/2 4. SCC is partially evaluated into start/2 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations append/3 * CE 17 is refined into CE [18] * CE 16 is refined into CE [19] ### Cost equations --> "Loop" of append/3 * CEs [19] --> Loop 10 * CEs [18] --> Loop 11 ### Ranking functions of CR append(V2,V1,Out) * RF of phase [11]: [V2] #### Partial ranking functions of CR append(V2,V1,Out) * Partial RF of phase [11]: - RF of loop [11:1]: V2 ### Specialization of cost equations appendAll/2 * CE 13 is refined into CE [20,21] * CE 12 is refined into CE [22] ### Cost equations --> "Loop" of appendAll/2 * CEs [22] --> Loop 12 * CEs [21] --> Loop 13 * CEs [20] --> Loop 14 ### Ranking functions of CR appendAll(V2,Out) * RF of phase [13,14]: [V2] #### Partial ranking functions of CR appendAll(V2,Out) * Partial RF of phase [13,14]: - RF of loop [13:1]: V2-1 - RF of loop [14:1]: V2 ### Specialization of cost equations appendAll2/2 * CE 15 is refined into CE [23,24,25] * CE 14 is refined into CE [26] ### Cost equations --> "Loop" of appendAll2/2 * CEs [26] --> Loop 15 * CEs [25] --> Loop 16 * CEs [24] --> Loop 17 * CEs [23] --> Loop 18 ### Ranking functions of CR appendAll2(V2,Out) * RF of phase [16,17,18]: [V2] #### Partial ranking functions of CR appendAll2(V2,Out) * Partial RF of phase [16,17,18]: - RF of loop [16:1]: V2-2 - RF of loop [17:1]: V2-1 - RF of loop [18:1]: V2 ### Specialization of cost equations fun3/2 * CE 11 is refined into CE [27] * CE 10 is refined into CE [28,29,30] ### Cost equations --> "Loop" of fun3/2 * CEs [30] --> Loop 19 * CEs [29] --> Loop 20 * CEs [28] --> Loop 21 * CEs [27] --> Loop 22 ### Ranking functions of CR fun3(V2,Out) * RF of phase [19,20,21]: [V2] #### Partial ranking functions of CR fun3(V2,Out) * Partial RF of phase [19,20,21]: - RF of loop [19:1]: V2-2 - RF of loop [20:1]: V2-1 - RF of loop [21:1]: V2 ### Specialization of cost equations start/2 * CE 1 is refined into CE [31,32] * CE 2 is refined into CE [33] * CE 3 is refined into CE [34,35,36,37,38,39] * CE 4 is refined into CE [40,41,42,43] * CE 5 is refined into CE [44,45] * CE 6 is refined into CE [46,47] * CE 7 is refined into CE [48,49] * CE 8 is refined into CE [50,51] * CE 9 is refined into CE [52,53] ### Cost equations --> "Loop" of start/2 * CEs [32,34,35,36,37,38,39,40,41,42,43,44,45,47,49,51,53] --> Loop 23 * CEs [31,33,46,48,50,52] --> Loop 24 ### Ranking functions of CR start(V2,V1) #### Partial ranking functions of CR start(V2,V1) Computing Bounds ===================================== #### Cost of chains of append(V2,V1,Out): * Chain [[11],10]: 2*it(11)+2 Such that:it(11) =< -V1+Out with precondition: [V1+V2=Out,V2>=1,V1>=0] * Chain [10]: 2 with precondition: [V2=0,V1=Out,V1>=0] #### Cost of chains of appendAll(V2,Out): * Chain [[13,14],12]: 10*it(13)+2 Such that:aux(3) =< V2 it(13) =< aux(3) with precondition: [Out>=0,V2>=Out+1] * Chain [12]: 2 with precondition: [V2=0,Out=0] #### Cost of chains of appendAll2(V2,Out): * Chain [[16,17,18],15]: 40*it(16)+2 Such that:aux(7) =< V2 it(16) =< aux(7) with precondition: [Out>=0,V2>=Out+1] * Chain [15]: 2 with precondition: [V2=0,Out=0] #### Cost of chains of fun3(V2,Out): * Chain [[19,20,21],22]: 100*it(19)+1 Such that:aux(11) =< V2 it(19) =< aux(11) with precondition: [Out>=0,V2>=Out+1] * Chain [22]: 1 with precondition: [V2=0,Out=0] #### Cost of chains of start(V2,V1): * Chain [24]: 2 with precondition: [V2=0] * Chain [23]: 442*s(31)+7 Such that:aux(16) =< V2 s(31) =< aux(16) with precondition: [V2>=1] Closed-form bounds of start(V2,V1): ------------------------------------- * Chain [24] with precondition: [V2=0] - Upper bound: 2 - Complexity: constant * Chain [23] with precondition: [V2>=1] - Upper bound: 442*V2+7 - Complexity: n ### Maximum cost of start(V2,V1): 442*V2+7 Asymptotic class: n * Total analysis performed in 270 ms. ---------------------------------------- (10) BOUNDS(1, n^1) ---------------------------------------- (11) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (12) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: append(@l1, @l2) -> append#1(@l1, @l2) append#1(::(@x, @xs), @l2) -> ::(@x, append(@xs, @l2)) append#1(nil, @l2) -> @l2 appendAll(@l) -> appendAll#1(@l) appendAll#1(::(@l1, @ls)) -> append(@l1, appendAll(@ls)) appendAll#1(nil) -> nil appendAll2(@l) -> appendAll2#1(@l) appendAll2#1(::(@l1, @ls)) -> append(appendAll(@l1), appendAll2(@ls)) appendAll2#1(nil) -> nil appendAll3(@l) -> appendAll3#1(@l) appendAll3#1(::(@l1, @ls)) -> append(appendAll2(@l1), appendAll3(@ls)) appendAll3#1(nil) -> nil S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (13) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (14) Obligation: Innermost TRS: Rules: append(@l1, @l2) -> append#1(@l1, @l2) append#1(::(@x, @xs), @l2) -> ::(@x, append(@xs, @l2)) append#1(nil, @l2) -> @l2 appendAll(@l) -> appendAll#1(@l) appendAll#1(::(@l1, @ls)) -> append(@l1, appendAll(@ls)) appendAll#1(nil) -> nil appendAll2(@l) -> appendAll2#1(@l) appendAll2#1(::(@l1, @ls)) -> append(appendAll(@l1), appendAll2(@ls)) appendAll2#1(nil) -> nil appendAll3(@l) -> appendAll3#1(@l) appendAll3#1(::(@l1, @ls)) -> append(appendAll2(@l1), appendAll3(@ls)) appendAll3#1(nil) -> nil Types: append :: :::nil -> :::nil -> :::nil append#1 :: :::nil -> :::nil -> :::nil :: :: :::nil -> :::nil -> :::nil nil :: :::nil appendAll :: :::nil -> :::nil appendAll#1 :: :::nil -> :::nil appendAll2 :: :::nil -> :::nil appendAll2#1 :: :::nil -> :::nil appendAll3 :: :::nil -> :::nil appendAll3#1 :: :::nil -> :::nil hole_:::nil1_0 :: :::nil gen_:::nil2_0 :: Nat -> :::nil ---------------------------------------- (15) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: append, append#1, appendAll, appendAll#1, appendAll2, appendAll2#1, appendAll3, appendAll3#1 They will be analysed ascendingly in the following order: append = append#1 append < appendAll#1 append < appendAll2#1 append < appendAll3#1 appendAll = appendAll#1 appendAll < appendAll2#1 appendAll2 = appendAll2#1 appendAll2 < appendAll3#1 appendAll3 = appendAll3#1 ---------------------------------------- (16) Obligation: Innermost TRS: Rules: append(@l1, @l2) -> append#1(@l1, @l2) append#1(::(@x, @xs), @l2) -> ::(@x, append(@xs, @l2)) append#1(nil, @l2) -> @l2 appendAll(@l) -> appendAll#1(@l) appendAll#1(::(@l1, @ls)) -> append(@l1, appendAll(@ls)) appendAll#1(nil) -> nil appendAll2(@l) -> appendAll2#1(@l) appendAll2#1(::(@l1, @ls)) -> append(appendAll(@l1), appendAll2(@ls)) appendAll2#1(nil) -> nil appendAll3(@l) -> appendAll3#1(@l) appendAll3#1(::(@l1, @ls)) -> append(appendAll2(@l1), appendAll3(@ls)) appendAll3#1(nil) -> nil Types: append :: :::nil -> :::nil -> :::nil append#1 :: :::nil -> :::nil -> :::nil :: :: :::nil -> :::nil -> :::nil nil :: :::nil appendAll :: :::nil -> :::nil appendAll#1 :: :::nil -> :::nil appendAll2 :: :::nil -> :::nil appendAll2#1 :: :::nil -> :::nil appendAll3 :: :::nil -> :::nil appendAll3#1 :: :::nil -> :::nil hole_:::nil1_0 :: :::nil gen_:::nil2_0 :: Nat -> :::nil Generator Equations: gen_:::nil2_0(0) <=> nil gen_:::nil2_0(+(x, 1)) <=> ::(nil, gen_:::nil2_0(x)) The following defined symbols remain to be analysed: append#1, append, appendAll, appendAll#1, appendAll2, appendAll2#1, appendAll3, appendAll3#1 They will be analysed ascendingly in the following order: append = append#1 append < appendAll#1 append < appendAll2#1 append < appendAll3#1 appendAll = appendAll#1 appendAll < appendAll2#1 appendAll2 = appendAll2#1 appendAll2 < appendAll3#1 appendAll3 = appendAll3#1 ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: append#1(gen_:::nil2_0(n4_0), gen_:::nil2_0(b)) -> gen_:::nil2_0(+(n4_0, b)), rt in Omega(1 + n4_0) Induction Base: append#1(gen_:::nil2_0(0), gen_:::nil2_0(b)) ->_R^Omega(1) gen_:::nil2_0(b) Induction Step: append#1(gen_:::nil2_0(+(n4_0, 1)), gen_:::nil2_0(b)) ->_R^Omega(1) ::(nil, append(gen_:::nil2_0(n4_0), gen_:::nil2_0(b))) ->_R^Omega(1) ::(nil, append#1(gen_:::nil2_0(n4_0), gen_:::nil2_0(b))) ->_IH ::(nil, gen_:::nil2_0(+(b, c5_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (18) Complex Obligation (BEST) ---------------------------------------- (19) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: append(@l1, @l2) -> append#1(@l1, @l2) append#1(::(@x, @xs), @l2) -> ::(@x, append(@xs, @l2)) append#1(nil, @l2) -> @l2 appendAll(@l) -> appendAll#1(@l) appendAll#1(::(@l1, @ls)) -> append(@l1, appendAll(@ls)) appendAll#1(nil) -> nil appendAll2(@l) -> appendAll2#1(@l) appendAll2#1(::(@l1, @ls)) -> append(appendAll(@l1), appendAll2(@ls)) appendAll2#1(nil) -> nil appendAll3(@l) -> appendAll3#1(@l) appendAll3#1(::(@l1, @ls)) -> append(appendAll2(@l1), appendAll3(@ls)) appendAll3#1(nil) -> nil Types: append :: :::nil -> :::nil -> :::nil append#1 :: :::nil -> :::nil -> :::nil :: :: :::nil -> :::nil -> :::nil nil :: :::nil appendAll :: :::nil -> :::nil appendAll#1 :: :::nil -> :::nil appendAll2 :: :::nil -> :::nil appendAll2#1 :: :::nil -> :::nil appendAll3 :: :::nil -> :::nil appendAll3#1 :: :::nil -> :::nil hole_:::nil1_0 :: :::nil gen_:::nil2_0 :: Nat -> :::nil Generator Equations: gen_:::nil2_0(0) <=> nil gen_:::nil2_0(+(x, 1)) <=> ::(nil, gen_:::nil2_0(x)) The following defined symbols remain to be analysed: append#1, append, appendAll, appendAll#1, appendAll2, appendAll2#1, appendAll3, appendAll3#1 They will be analysed ascendingly in the following order: append = append#1 append < appendAll#1 append < appendAll2#1 append < appendAll3#1 appendAll = appendAll#1 appendAll < appendAll2#1 appendAll2 = appendAll2#1 appendAll2 < appendAll3#1 appendAll3 = appendAll3#1 ---------------------------------------- (20) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (21) BOUNDS(n^1, INF) ---------------------------------------- (22) Obligation: Innermost TRS: Rules: append(@l1, @l2) -> append#1(@l1, @l2) append#1(::(@x, @xs), @l2) -> ::(@x, append(@xs, @l2)) append#1(nil, @l2) -> @l2 appendAll(@l) -> appendAll#1(@l) appendAll#1(::(@l1, @ls)) -> append(@l1, appendAll(@ls)) appendAll#1(nil) -> nil appendAll2(@l) -> appendAll2#1(@l) appendAll2#1(::(@l1, @ls)) -> append(appendAll(@l1), appendAll2(@ls)) appendAll2#1(nil) -> nil appendAll3(@l) -> appendAll3#1(@l) appendAll3#1(::(@l1, @ls)) -> append(appendAll2(@l1), appendAll3(@ls)) appendAll3#1(nil) -> nil Types: append :: :::nil -> :::nil -> :::nil append#1 :: :::nil -> :::nil -> :::nil :: :: :::nil -> :::nil -> :::nil nil :: :::nil appendAll :: :::nil -> :::nil appendAll#1 :: :::nil -> :::nil appendAll2 :: :::nil -> :::nil appendAll2#1 :: :::nil -> :::nil appendAll3 :: :::nil -> :::nil appendAll3#1 :: :::nil -> :::nil hole_:::nil1_0 :: :::nil gen_:::nil2_0 :: Nat -> :::nil Lemmas: append#1(gen_:::nil2_0(n4_0), gen_:::nil2_0(b)) -> gen_:::nil2_0(+(n4_0, b)), rt in Omega(1 + n4_0) Generator Equations: gen_:::nil2_0(0) <=> nil gen_:::nil2_0(+(x, 1)) <=> ::(nil, gen_:::nil2_0(x)) The following defined symbols remain to be analysed: append, appendAll, appendAll#1, appendAll2, appendAll2#1, appendAll3, appendAll3#1 They will be analysed ascendingly in the following order: append = append#1 append < appendAll#1 append < appendAll2#1 append < appendAll3#1 appendAll = appendAll#1 appendAll < appendAll2#1 appendAll2 = appendAll2#1 appendAll2 < appendAll3#1 appendAll3 = appendAll3#1 ---------------------------------------- (23) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: appendAll#1(gen_:::nil2_0(n633_0)) -> gen_:::nil2_0(0), rt in Omega(1 + n633_0) Induction Base: appendAll#1(gen_:::nil2_0(0)) ->_R^Omega(1) nil Induction Step: appendAll#1(gen_:::nil2_0(+(n633_0, 1))) ->_R^Omega(1) append(nil, appendAll(gen_:::nil2_0(n633_0))) ->_R^Omega(1) append(nil, appendAll#1(gen_:::nil2_0(n633_0))) ->_IH append(nil, gen_:::nil2_0(0)) ->_R^Omega(1) append#1(nil, gen_:::nil2_0(0)) ->_L^Omega(1) gen_:::nil2_0(+(0, 0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (24) Obligation: Innermost TRS: Rules: append(@l1, @l2) -> append#1(@l1, @l2) append#1(::(@x, @xs), @l2) -> ::(@x, append(@xs, @l2)) append#1(nil, @l2) -> @l2 appendAll(@l) -> appendAll#1(@l) appendAll#1(::(@l1, @ls)) -> append(@l1, appendAll(@ls)) appendAll#1(nil) -> nil appendAll2(@l) -> appendAll2#1(@l) appendAll2#1(::(@l1, @ls)) -> append(appendAll(@l1), appendAll2(@ls)) appendAll2#1(nil) -> nil appendAll3(@l) -> appendAll3#1(@l) appendAll3#1(::(@l1, @ls)) -> append(appendAll2(@l1), appendAll3(@ls)) appendAll3#1(nil) -> nil Types: append :: :::nil -> :::nil -> :::nil append#1 :: :::nil -> :::nil -> :::nil :: :: :::nil -> :::nil -> :::nil nil :: :::nil appendAll :: :::nil -> :::nil appendAll#1 :: :::nil -> :::nil appendAll2 :: :::nil -> :::nil appendAll2#1 :: :::nil -> :::nil appendAll3 :: :::nil -> :::nil appendAll3#1 :: :::nil -> :::nil hole_:::nil1_0 :: :::nil gen_:::nil2_0 :: Nat -> :::nil Lemmas: append#1(gen_:::nil2_0(n4_0), gen_:::nil2_0(b)) -> gen_:::nil2_0(+(n4_0, b)), rt in Omega(1 + n4_0) appendAll#1(gen_:::nil2_0(n633_0)) -> gen_:::nil2_0(0), rt in Omega(1 + n633_0) Generator Equations: gen_:::nil2_0(0) <=> nil gen_:::nil2_0(+(x, 1)) <=> ::(nil, gen_:::nil2_0(x)) The following defined symbols remain to be analysed: appendAll, appendAll2, appendAll2#1, appendAll3, appendAll3#1 They will be analysed ascendingly in the following order: appendAll = appendAll#1 appendAll < appendAll2#1 appendAll2 = appendAll2#1 appendAll2 < appendAll3#1 appendAll3 = appendAll3#1 ---------------------------------------- (25) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: appendAll2#1(gen_:::nil2_0(n1017_0)) -> gen_:::nil2_0(0), rt in Omega(1 + n1017_0) Induction Base: appendAll2#1(gen_:::nil2_0(0)) ->_R^Omega(1) nil Induction Step: appendAll2#1(gen_:::nil2_0(+(n1017_0, 1))) ->_R^Omega(1) append(appendAll(nil), appendAll2(gen_:::nil2_0(n1017_0))) ->_R^Omega(1) append(appendAll#1(nil), appendAll2(gen_:::nil2_0(n1017_0))) ->_L^Omega(1) append(gen_:::nil2_0(0), appendAll2(gen_:::nil2_0(n1017_0))) ->_R^Omega(1) append(gen_:::nil2_0(0), appendAll2#1(gen_:::nil2_0(n1017_0))) ->_IH append(gen_:::nil2_0(0), gen_:::nil2_0(0)) ->_R^Omega(1) append#1(gen_:::nil2_0(0), gen_:::nil2_0(0)) ->_L^Omega(1) gen_:::nil2_0(+(0, 0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (26) Obligation: Innermost TRS: Rules: append(@l1, @l2) -> append#1(@l1, @l2) append#1(::(@x, @xs), @l2) -> ::(@x, append(@xs, @l2)) append#1(nil, @l2) -> @l2 appendAll(@l) -> appendAll#1(@l) appendAll#1(::(@l1, @ls)) -> append(@l1, appendAll(@ls)) appendAll#1(nil) -> nil appendAll2(@l) -> appendAll2#1(@l) appendAll2#1(::(@l1, @ls)) -> append(appendAll(@l1), appendAll2(@ls)) appendAll2#1(nil) -> nil appendAll3(@l) -> appendAll3#1(@l) appendAll3#1(::(@l1, @ls)) -> append(appendAll2(@l1), appendAll3(@ls)) appendAll3#1(nil) -> nil Types: append :: :::nil -> :::nil -> :::nil append#1 :: :::nil -> :::nil -> :::nil :: :: :::nil -> :::nil -> :::nil nil :: :::nil appendAll :: :::nil -> :::nil appendAll#1 :: :::nil -> :::nil appendAll2 :: :::nil -> :::nil appendAll2#1 :: :::nil -> :::nil appendAll3 :: :::nil -> :::nil appendAll3#1 :: :::nil -> :::nil hole_:::nil1_0 :: :::nil gen_:::nil2_0 :: Nat -> :::nil Lemmas: append#1(gen_:::nil2_0(n4_0), gen_:::nil2_0(b)) -> gen_:::nil2_0(+(n4_0, b)), rt in Omega(1 + n4_0) appendAll#1(gen_:::nil2_0(n633_0)) -> gen_:::nil2_0(0), rt in Omega(1 + n633_0) appendAll2#1(gen_:::nil2_0(n1017_0)) -> gen_:::nil2_0(0), rt in Omega(1 + n1017_0) Generator Equations: gen_:::nil2_0(0) <=> nil gen_:::nil2_0(+(x, 1)) <=> ::(nil, gen_:::nil2_0(x)) The following defined symbols remain to be analysed: appendAll2, appendAll3, appendAll3#1 They will be analysed ascendingly in the following order: appendAll2 = appendAll2#1 appendAll2 < appendAll3#1 appendAll3 = appendAll3#1 ---------------------------------------- (27) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: appendAll3#1(gen_:::nil2_0(n1767_0)) -> gen_:::nil2_0(0), rt in Omega(1 + n1767_0) Induction Base: appendAll3#1(gen_:::nil2_0(0)) ->_R^Omega(1) nil Induction Step: appendAll3#1(gen_:::nil2_0(+(n1767_0, 1))) ->_R^Omega(1) append(appendAll2(nil), appendAll3(gen_:::nil2_0(n1767_0))) ->_R^Omega(1) append(appendAll2#1(nil), appendAll3(gen_:::nil2_0(n1767_0))) ->_L^Omega(1) append(gen_:::nil2_0(0), appendAll3(gen_:::nil2_0(n1767_0))) ->_R^Omega(1) append(gen_:::nil2_0(0), appendAll3#1(gen_:::nil2_0(n1767_0))) ->_IH append(gen_:::nil2_0(0), gen_:::nil2_0(0)) ->_R^Omega(1) append#1(gen_:::nil2_0(0), gen_:::nil2_0(0)) ->_L^Omega(1) gen_:::nil2_0(+(0, 0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (28) Obligation: Innermost TRS: Rules: append(@l1, @l2) -> append#1(@l1, @l2) append#1(::(@x, @xs), @l2) -> ::(@x, append(@xs, @l2)) append#1(nil, @l2) -> @l2 appendAll(@l) -> appendAll#1(@l) appendAll#1(::(@l1, @ls)) -> append(@l1, appendAll(@ls)) appendAll#1(nil) -> nil appendAll2(@l) -> appendAll2#1(@l) appendAll2#1(::(@l1, @ls)) -> append(appendAll(@l1), appendAll2(@ls)) appendAll2#1(nil) -> nil appendAll3(@l) -> appendAll3#1(@l) appendAll3#1(::(@l1, @ls)) -> append(appendAll2(@l1), appendAll3(@ls)) appendAll3#1(nil) -> nil Types: append :: :::nil -> :::nil -> :::nil append#1 :: :::nil -> :::nil -> :::nil :: :: :::nil -> :::nil -> :::nil nil :: :::nil appendAll :: :::nil -> :::nil appendAll#1 :: :::nil -> :::nil appendAll2 :: :::nil -> :::nil appendAll2#1 :: :::nil -> :::nil appendAll3 :: :::nil -> :::nil appendAll3#1 :: :::nil -> :::nil hole_:::nil1_0 :: :::nil gen_:::nil2_0 :: Nat -> :::nil Lemmas: append#1(gen_:::nil2_0(n4_0), gen_:::nil2_0(b)) -> gen_:::nil2_0(+(n4_0, b)), rt in Omega(1 + n4_0) appendAll#1(gen_:::nil2_0(n633_0)) -> gen_:::nil2_0(0), rt in Omega(1 + n633_0) appendAll2#1(gen_:::nil2_0(n1017_0)) -> gen_:::nil2_0(0), rt in Omega(1 + n1017_0) appendAll3#1(gen_:::nil2_0(n1767_0)) -> gen_:::nil2_0(0), rt in Omega(1 + n1767_0) Generator Equations: gen_:::nil2_0(0) <=> nil gen_:::nil2_0(+(x, 1)) <=> ::(nil, gen_:::nil2_0(x)) The following defined symbols remain to be analysed: appendAll3 They will be analysed ascendingly in the following order: appendAll3 = appendAll3#1