/export/starexec/sandbox/solver/bin/starexec_run_tct_rci /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1),?) * Step 1: Sum. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: help(false(),x,y) -> 0() help(true(),x,y) -> s(minus(x,s(y))) lt(x,0()) -> false() lt(0(),s(x)) -> true() lt(s(x),s(y)) -> lt(x,y) minus(x,y) -> help(lt(y,x),x,y) - Signature: {help/3,lt/2,minus/2} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {help,lt,minus} and constructors {0,false,s,true} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: Sum. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: help(false(),x,y) -> 0() help(true(),x,y) -> s(minus(x,s(y))) lt(x,0()) -> false() lt(0(),s(x)) -> true() lt(s(x),s(y)) -> lt(x,y) minus(x,y) -> help(lt(y,x),x,y) - Signature: {help/3,lt/2,minus/2} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {help,lt,minus} and constructors {0,false,s,true} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:2: DecreasingLoops. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: help(false(),x,y) -> 0() help(true(),x,y) -> s(minus(x,s(y))) lt(x,0()) -> false() lt(0(),s(x)) -> true() lt(s(x),s(y)) -> lt(x,y) minus(x,y) -> help(lt(y,x),x,y) - Signature: {help/3,lt/2,minus/2} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {help,lt,minus} and constructors {0,false,s,true} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: lt(x,y){x -> s(x),y -> s(y)} = lt(s(x),s(y)) ->^+ lt(x,y) = C[lt(x,y) = lt(x,y){}] ** Step 1.b:1: DependencyPairs. MAYBE + Considered Problem: - Strict TRS: help(false(),x,y) -> 0() help(true(),x,y) -> s(minus(x,s(y))) lt(x,0()) -> false() lt(0(),s(x)) -> true() lt(s(x),s(y)) -> lt(x,y) minus(x,y) -> help(lt(y,x),x,y) - Signature: {help/3,lt/2,minus/2} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {help,lt,minus} and constructors {0,false,s,true} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs help#(false(),x,y) -> c_1() help#(true(),x,y) -> c_2(minus#(x,s(y))) lt#(x,0()) -> c_3() lt#(0(),s(x)) -> c_4() lt#(s(x),s(y)) -> c_5(lt#(x,y)) minus#(x,y) -> c_6(help#(lt(y,x),x,y),lt#(y,x)) Weak DPs and mark the set of starting terms. ** Step 1.b:2: PredecessorEstimation. MAYBE + Considered Problem: - Strict DPs: help#(false(),x,y) -> c_1() help#(true(),x,y) -> c_2(minus#(x,s(y))) lt#(x,0()) -> c_3() lt#(0(),s(x)) -> c_4() lt#(s(x),s(y)) -> c_5(lt#(x,y)) minus#(x,y) -> c_6(help#(lt(y,x),x,y),lt#(y,x)) - Weak TRS: help(false(),x,y) -> 0() help(true(),x,y) -> s(minus(x,s(y))) lt(x,0()) -> false() lt(0(),s(x)) -> true() lt(s(x),s(y)) -> lt(x,y) minus(x,y) -> help(lt(y,x),x,y) - Signature: {help/3,lt/2,minus/2,help#/3,lt#/2,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {help#,lt#,minus#} and constructors {0,false,s,true} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,3,4} by application of Pre({1,3,4}) = {5,6}. Here rules are labelled as follows: 1: help#(false(),x,y) -> c_1() 2: help#(true(),x,y) -> c_2(minus#(x,s(y))) 3: lt#(x,0()) -> c_3() 4: lt#(0(),s(x)) -> c_4() 5: lt#(s(x),s(y)) -> c_5(lt#(x,y)) 6: minus#(x,y) -> c_6(help#(lt(y,x),x,y),lt#(y,x)) ** Step 1.b:3: RemoveWeakSuffixes. MAYBE + Considered Problem: - Strict DPs: help#(true(),x,y) -> c_2(minus#(x,s(y))) lt#(s(x),s(y)) -> c_5(lt#(x,y)) minus#(x,y) -> c_6(help#(lt(y,x),x,y),lt#(y,x)) - Weak DPs: help#(false(),x,y) -> c_1() lt#(x,0()) -> c_3() lt#(0(),s(x)) -> c_4() - Weak TRS: help(false(),x,y) -> 0() help(true(),x,y) -> s(minus(x,s(y))) lt(x,0()) -> false() lt(0(),s(x)) -> true() lt(s(x),s(y)) -> lt(x,y) minus(x,y) -> help(lt(y,x),x,y) - Signature: {help/3,lt/2,minus/2,help#/3,lt#/2,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {help#,lt#,minus#} and constructors {0,false,s,true} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:help#(true(),x,y) -> c_2(minus#(x,s(y))) -->_1 minus#(x,y) -> c_6(help#(lt(y,x),x,y),lt#(y,x)):3 2:S:lt#(s(x),s(y)) -> c_5(lt#(x,y)) -->_1 lt#(0(),s(x)) -> c_4():6 -->_1 lt#(x,0()) -> c_3():5 -->_1 lt#(s(x),s(y)) -> c_5(lt#(x,y)):2 3:S:minus#(x,y) -> c_6(help#(lt(y,x),x,y),lt#(y,x)) -->_2 lt#(0(),s(x)) -> c_4():6 -->_2 lt#(x,0()) -> c_3():5 -->_1 help#(false(),x,y) -> c_1():4 -->_2 lt#(s(x),s(y)) -> c_5(lt#(x,y)):2 -->_1 help#(true(),x,y) -> c_2(minus#(x,s(y))):1 4:W:help#(false(),x,y) -> c_1() 5:W:lt#(x,0()) -> c_3() 6:W:lt#(0(),s(x)) -> c_4() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: help#(false(),x,y) -> c_1() 5: lt#(x,0()) -> c_3() 6: lt#(0(),s(x)) -> c_4() ** Step 1.b:4: UsableRules. MAYBE + Considered Problem: - Strict DPs: help#(true(),x,y) -> c_2(minus#(x,s(y))) lt#(s(x),s(y)) -> c_5(lt#(x,y)) minus#(x,y) -> c_6(help#(lt(y,x),x,y),lt#(y,x)) - Weak TRS: help(false(),x,y) -> 0() help(true(),x,y) -> s(minus(x,s(y))) lt(x,0()) -> false() lt(0(),s(x)) -> true() lt(s(x),s(y)) -> lt(x,y) minus(x,y) -> help(lt(y,x),x,y) - Signature: {help/3,lt/2,minus/2,help#/3,lt#/2,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {help#,lt#,minus#} and constructors {0,false,s,true} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: lt(x,0()) -> false() lt(0(),s(x)) -> true() lt(s(x),s(y)) -> lt(x,y) help#(true(),x,y) -> c_2(minus#(x,s(y))) lt#(s(x),s(y)) -> c_5(lt#(x,y)) minus#(x,y) -> c_6(help#(lt(y,x),x,y),lt#(y,x)) ** Step 1.b:5: DecomposeDG. MAYBE + Considered Problem: - Strict DPs: help#(true(),x,y) -> c_2(minus#(x,s(y))) lt#(s(x),s(y)) -> c_5(lt#(x,y)) minus#(x,y) -> c_6(help#(lt(y,x),x,y),lt#(y,x)) - Weak TRS: lt(x,0()) -> false() lt(0(),s(x)) -> true() lt(s(x),s(y)) -> lt(x,y) - Signature: {help/3,lt/2,minus/2,help#/3,lt#/2,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {help#,lt#,minus#} and constructors {0,false,s,true} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Nothing, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component help#(true(),x,y) -> c_2(minus#(x,s(y))) minus#(x,y) -> c_6(help#(lt(y,x),x,y),lt#(y,x)) and a lower component lt#(s(x),s(y)) -> c_5(lt#(x,y)) Further, following extension rules are added to the lower component. help#(true(),x,y) -> minus#(x,s(y)) minus#(x,y) -> help#(lt(y,x),x,y) minus#(x,y) -> lt#(y,x) *** Step 1.b:5.a:1: SimplifyRHS. MAYBE + Considered Problem: - Strict DPs: help#(true(),x,y) -> c_2(minus#(x,s(y))) minus#(x,y) -> c_6(help#(lt(y,x),x,y),lt#(y,x)) - Weak TRS: lt(x,0()) -> false() lt(0(),s(x)) -> true() lt(s(x),s(y)) -> lt(x,y) - Signature: {help/3,lt/2,minus/2,help#/3,lt#/2,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {help#,lt#,minus#} and constructors {0,false,s,true} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:help#(true(),x,y) -> c_2(minus#(x,s(y))) -->_1 minus#(x,y) -> c_6(help#(lt(y,x),x,y),lt#(y,x)):2 2:S:minus#(x,y) -> c_6(help#(lt(y,x),x,y),lt#(y,x)) -->_1 help#(true(),x,y) -> c_2(minus#(x,s(y))):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: minus#(x,y) -> c_6(help#(lt(y,x),x,y)) *** Step 1.b:5.a:2: WeightGap. MAYBE + Considered Problem: - Strict DPs: help#(true(),x,y) -> c_2(minus#(x,s(y))) minus#(x,y) -> c_6(help#(lt(y,x),x,y)) - Weak TRS: lt(x,0()) -> false() lt(0(),s(x)) -> true() lt(s(x),s(y)) -> lt(x,y) - Signature: {help/3,lt/2,minus/2,help#/3,lt#/2,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {help#,lt#,minus#} and constructors {0,false,s,true} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(help#) = {1}, uargs(c_2) = {1}, uargs(c_6) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(false) = [0] p(help) = [0] p(lt) = [0] p(minus) = [0] p(s) = [0] p(true) = [0] p(help#) = [1] x1 + [2] p(lt#) = [4] x2 + [0] p(minus#) = [5] p(c_1) = [1] p(c_2) = [1] x1 + [7] p(c_3) = [1] p(c_4) = [1] p(c_5) = [1] p(c_6) = [1] x1 + [0] Following rules are strictly oriented: minus#(x,y) = [5] > [2] = c_6(help#(lt(y,x),x,y)) Following rules are (at-least) weakly oriented: help#(true(),x,y) = [2] >= [12] = c_2(minus#(x,s(y))) lt(x,0()) = [0] >= [0] = false() lt(0(),s(x)) = [0] >= [0] = true() lt(s(x),s(y)) = [0] >= [0] = lt(x,y) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** Step 1.b:5.a:3: Failure MAYBE + Considered Problem: - Strict DPs: help#(true(),x,y) -> c_2(minus#(x,s(y))) - Weak DPs: minus#(x,y) -> c_6(help#(lt(y,x),x,y)) - Weak TRS: lt(x,0()) -> false() lt(0(),s(x)) -> true() lt(s(x),s(y)) -> lt(x,y) - Signature: {help/3,lt/2,minus/2,help#/3,lt#/2,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {help#,lt#,minus#} and constructors {0,false,s,true} + Applied Processor: EmptyProcessor + Details: The problem is still open. *** Step 1.b:5.b:1: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: lt#(s(x),s(y)) -> c_5(lt#(x,y)) - Weak DPs: help#(true(),x,y) -> minus#(x,s(y)) minus#(x,y) -> help#(lt(y,x),x,y) minus#(x,y) -> lt#(y,x) - Weak TRS: lt(x,0()) -> false() lt(0(),s(x)) -> true() lt(s(x),s(y)) -> lt(x,y) - Signature: {help/3,lt/2,minus/2,help#/3,lt#/2,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {help#,lt#,minus#} and constructors {0,false,s,true} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_5) = {1} Following symbols are considered usable: {help#,lt#,minus#} TcT has computed the following interpretation: p(0) = [0] p(false) = [0] p(help) = [1] x2 + [8] p(lt) = [0] p(minus) = [0] p(s) = [1] x1 + [8] p(true) = [0] p(help#) = [3] x2 + [0] p(lt#) = [2] x2 + [0] p(minus#) = [3] x1 + [0] p(c_1) = [1] p(c_2) = [1] x1 + [1] p(c_3) = [0] p(c_4) = [1] p(c_5) = [1] x1 + [12] p(c_6) = [1] x2 + [1] Following rules are strictly oriented: lt#(s(x),s(y)) = [2] y + [16] > [2] y + [12] = c_5(lt#(x,y)) Following rules are (at-least) weakly oriented: help#(true(),x,y) = [3] x + [0] >= [3] x + [0] = minus#(x,s(y)) minus#(x,y) = [3] x + [0] >= [3] x + [0] = help#(lt(y,x),x,y) minus#(x,y) = [3] x + [0] >= [2] x + [0] = lt#(y,x) *** Step 1.b:5.b:2: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: help#(true(),x,y) -> minus#(x,s(y)) lt#(s(x),s(y)) -> c_5(lt#(x,y)) minus#(x,y) -> help#(lt(y,x),x,y) minus#(x,y) -> lt#(y,x) - Weak TRS: lt(x,0()) -> false() lt(0(),s(x)) -> true() lt(s(x),s(y)) -> lt(x,y) - Signature: {help/3,lt/2,minus/2,help#/3,lt#/2,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {help#,lt#,minus#} and constructors {0,false,s,true} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),?)