/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 5 ms] (8) CpxRNTS (9) CompleteCoflocoProof [FINISHED, 632 ms] (10) BOUNDS(1, n^1) (11) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTRS (13) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (14) typed CpxTrs (15) OrderProof [LOWER BOUND(ID), 0 ms] (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 279 ms] (18) BEST (19) proven lower bound (20) LowerBoundPropagationProof [FINISHED, 0 ms] (21) BOUNDS(n^1, INF) (22) typed CpxTrs (23) RewriteLemmaProof [LOWER BOUND(ID), 32 ms] (24) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) minus(x, 0) -> x minus(0, y) -> 0 minus(s(x), s(y)) -> minus(x, y) id_inc(x) -> x id_inc(x) -> s(x) div(x, y) -> if(ge(y, s(0)), ge(x, y), x, y) if(false, b, x, y) -> div_by_zero if(true, false, x, y) -> 0 if(true, true, x, y) -> id_inc(div(minus(x, y), y)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: ge(x, 0) -> true [1] ge(0, s(y)) -> false [1] ge(s(x), s(y)) -> ge(x, y) [1] minus(x, 0) -> x [1] minus(0, y) -> 0 [1] minus(s(x), s(y)) -> minus(x, y) [1] id_inc(x) -> x [1] id_inc(x) -> s(x) [1] div(x, y) -> if(ge(y, s(0)), ge(x, y), x, y) [1] if(false, b, x, y) -> div_by_zero [1] if(true, false, x, y) -> 0 [1] if(true, true, x, y) -> id_inc(div(minus(x, y), y)) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: ge(x, 0) -> true [1] ge(0, s(y)) -> false [1] ge(s(x), s(y)) -> ge(x, y) [1] minus(x, 0) -> x [1] minus(0, y) -> 0 [1] minus(s(x), s(y)) -> minus(x, y) [1] id_inc(x) -> x [1] id_inc(x) -> s(x) [1] div(x, y) -> if(ge(y, s(0)), ge(x, y), x, y) [1] if(false, b, x, y) -> div_by_zero [1] if(true, false, x, y) -> 0 [1] if(true, true, x, y) -> id_inc(div(minus(x, y), y)) [1] The TRS has the following type information: ge :: 0:s:div_by_zero -> 0:s:div_by_zero -> true:false 0 :: 0:s:div_by_zero true :: true:false s :: 0:s:div_by_zero -> 0:s:div_by_zero false :: true:false minus :: 0:s:div_by_zero -> 0:s:div_by_zero -> 0:s:div_by_zero id_inc :: 0:s:div_by_zero -> 0:s:div_by_zero div :: 0:s:div_by_zero -> 0:s:div_by_zero -> 0:s:div_by_zero if :: true:false -> true:false -> 0:s:div_by_zero -> 0:s:div_by_zero -> 0:s:div_by_zero div_by_zero :: 0:s:div_by_zero Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: ge(v0, v1) -> null_ge [0] minus(v0, v1) -> null_minus [0] if(v0, v1, v2, v3) -> null_if [0] And the following fresh constants: null_ge, null_minus, null_if ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: ge(x, 0) -> true [1] ge(0, s(y)) -> false [1] ge(s(x), s(y)) -> ge(x, y) [1] minus(x, 0) -> x [1] minus(0, y) -> 0 [1] minus(s(x), s(y)) -> minus(x, y) [1] id_inc(x) -> x [1] id_inc(x) -> s(x) [1] div(x, y) -> if(ge(y, s(0)), ge(x, y), x, y) [1] if(false, b, x, y) -> div_by_zero [1] if(true, false, x, y) -> 0 [1] if(true, true, x, y) -> id_inc(div(minus(x, y), y)) [1] ge(v0, v1) -> null_ge [0] minus(v0, v1) -> null_minus [0] if(v0, v1, v2, v3) -> null_if [0] The TRS has the following type information: ge :: 0:s:div_by_zero:null_minus:null_if -> 0:s:div_by_zero:null_minus:null_if -> true:false:null_ge 0 :: 0:s:div_by_zero:null_minus:null_if true :: true:false:null_ge s :: 0:s:div_by_zero:null_minus:null_if -> 0:s:div_by_zero:null_minus:null_if false :: true:false:null_ge minus :: 0:s:div_by_zero:null_minus:null_if -> 0:s:div_by_zero:null_minus:null_if -> 0:s:div_by_zero:null_minus:null_if id_inc :: 0:s:div_by_zero:null_minus:null_if -> 0:s:div_by_zero:null_minus:null_if div :: 0:s:div_by_zero:null_minus:null_if -> 0:s:div_by_zero:null_minus:null_if -> 0:s:div_by_zero:null_minus:null_if if :: true:false:null_ge -> true:false:null_ge -> 0:s:div_by_zero:null_minus:null_if -> 0:s:div_by_zero:null_minus:null_if -> 0:s:div_by_zero:null_minus:null_if div_by_zero :: 0:s:div_by_zero:null_minus:null_if null_ge :: true:false:null_ge null_minus :: 0:s:div_by_zero:null_minus:null_if null_if :: 0:s:div_by_zero:null_minus:null_if Rewrite Strategy: INNERMOST ---------------------------------------- (7) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 true => 2 false => 1 div_by_zero => 1 null_ge => 0 null_minus => 0 null_if => 0 ---------------------------------------- (8) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> if(ge(y, 1 + 0), ge(x, y), x, y) :|: x >= 0, y >= 0, z = x, z' = y ge(z, z') -{ 1 }-> ge(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x ge(z, z') -{ 1 }-> 2 :|: x >= 0, z = x, z' = 0 ge(z, z') -{ 1 }-> 1 :|: z' = 1 + y, y >= 0, z = 0 ge(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 id_inc(z) -{ 1 }-> x :|: x >= 0, z = x id_inc(z) -{ 1 }-> 1 + x :|: x >= 0, z = x if(z, z', z'', z1) -{ 1 }-> id_inc(div(minus(x, y), y)) :|: z = 2, z1 = y, z' = 2, x >= 0, y >= 0, z'' = x if(z, z', z'', z1) -{ 1 }-> 1 :|: b >= 0, z1 = y, z = 1, x >= 0, y >= 0, z' = b, z'' = x if(z, z', z'', z1) -{ 1 }-> 0 :|: z = 2, z1 = y, x >= 0, y >= 0, z'' = x, z' = 1 if(z, z', z'', z1) -{ 0 }-> 0 :|: z1 = v3, v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0, v3 >= 0 minus(z, z') -{ 1 }-> x :|: x >= 0, z = x, z' = 0 minus(z, z') -{ 1 }-> minus(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x minus(z, z') -{ 1 }-> 0 :|: y >= 0, z = 0, z' = y minus(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (9) CompleteCoflocoProof (FINISHED) Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: eq(start(V1, V, V15, V18),0,[ge(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V, V15, V18),0,[minus(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V, V15, V18),0,[fun(V1, Out)],[V1 >= 0]). eq(start(V1, V, V15, V18),0,[div(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V, V15, V18),0,[if(V1, V, V15, V18, Out)],[V1 >= 0,V >= 0,V15 >= 0,V18 >= 0]). eq(ge(V1, V, Out),1,[],[Out = 2,V2 >= 0,V1 = V2,V = 0]). eq(ge(V1, V, Out),1,[],[Out = 1,V = 1 + V3,V3 >= 0,V1 = 0]). eq(ge(V1, V, Out),1,[ge(V4, V5, Ret)],[Out = Ret,V = 1 + V5,V4 >= 0,V5 >= 0,V1 = 1 + V4]). eq(minus(V1, V, Out),1,[],[Out = V6,V6 >= 0,V1 = V6,V = 0]). eq(minus(V1, V, Out),1,[],[Out = 0,V7 >= 0,V1 = 0,V = V7]). eq(minus(V1, V, Out),1,[minus(V8, V9, Ret1)],[Out = Ret1,V = 1 + V9,V8 >= 0,V9 >= 0,V1 = 1 + V8]). eq(fun(V1, Out),1,[],[Out = V10,V10 >= 0,V1 = V10]). eq(fun(V1, Out),1,[],[Out = 1 + V11,V11 >= 0,V1 = V11]). eq(div(V1, V, Out),1,[ge(V12, 1 + 0, Ret0),ge(V13, V12, Ret11),if(Ret0, Ret11, V13, V12, Ret2)],[Out = Ret2,V13 >= 0,V12 >= 0,V1 = V13,V = V12]). eq(if(V1, V, V15, V18, Out),1,[],[Out = 1,V17 >= 0,V18 = V14,V1 = 1,V16 >= 0,V14 >= 0,V = V17,V15 = V16]). eq(if(V1, V, V15, V18, Out),1,[],[Out = 0,V1 = 2,V18 = V20,V19 >= 0,V20 >= 0,V15 = V19,V = 1]). eq(if(V1, V, V15, V18, Out),1,[minus(V22, V21, Ret00),div(Ret00, V21, Ret01),fun(Ret01, Ret3)],[Out = Ret3,V1 = 2,V18 = V21,V = 2,V22 >= 0,V21 >= 0,V15 = V22]). eq(ge(V1, V, Out),0,[],[Out = 0,V24 >= 0,V23 >= 0,V1 = V24,V = V23]). eq(minus(V1, V, Out),0,[],[Out = 0,V26 >= 0,V25 >= 0,V1 = V26,V = V25]). eq(if(V1, V, V15, V18, Out),0,[],[Out = 0,V18 = V29,V28 >= 0,V15 = V30,V27 >= 0,V1 = V28,V = V27,V30 >= 0,V29 >= 0]). input_output_vars(ge(V1,V,Out),[V1,V],[Out]). input_output_vars(minus(V1,V,Out),[V1,V],[Out]). input_output_vars(fun(V1,Out),[V1],[Out]). input_output_vars(div(V1,V,Out),[V1,V],[Out]). input_output_vars(if(V1,V,V15,V18,Out),[V1,V,V15,V18],[Out]). CoFloCo proof output: Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. recursive : [ge/3] 1. non_recursive : [fun/2] 2. recursive : [minus/3] 3. recursive [non_tail] : [(div)/3,if/5] 4. non_recursive : [start/4] #### Obtained direct recursion through partial evaluation 0. SCC is partially evaluated into ge/3 1. SCC is partially evaluated into fun/2 2. SCC is partially evaluated into minus/3 3. SCC is partially evaluated into (div)/3 4. SCC is partially evaluated into start/4 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations ge/3 * CE 22 is refined into CE [23] * CE 19 is refined into CE [24] * CE 20 is refined into CE [25] * CE 21 is refined into CE [26] ### Cost equations --> "Loop" of ge/3 * CEs [26] --> Loop 16 * CEs [23] --> Loop 17 * CEs [24] --> Loop 18 * CEs [25] --> Loop 19 ### Ranking functions of CR ge(V1,V,Out) * RF of phase [16]: [V,V1] #### Partial ranking functions of CR ge(V1,V,Out) * Partial RF of phase [16]: - RF of loop [16:1]: V V1 ### Specialization of cost equations fun/2 * CE 17 is refined into CE [27] * CE 18 is refined into CE [28] ### Cost equations --> "Loop" of fun/2 * CEs [27] --> Loop 20 * CEs [28] --> Loop 21 ### Ranking functions of CR fun(V1,Out) #### Partial ranking functions of CR fun(V1,Out) ### Specialization of cost equations minus/3 * CE 9 is refined into CE [29] * CE 10 is refined into CE [30] * CE 12 is refined into CE [31] * CE 11 is refined into CE [32] ### Cost equations --> "Loop" of minus/3 * CEs [32] --> Loop 22 * CEs [29] --> Loop 23 * CEs [30,31] --> Loop 24 ### Ranking functions of CR minus(V1,V,Out) * RF of phase [22]: [V,V1] #### Partial ranking functions of CR minus(V1,V,Out) * Partial RF of phase [22]: - RF of loop [22:1]: V V1 ### Specialization of cost equations (div)/3 * CE 16 is refined into CE [33,34] * CE 13 is refined into CE [35,36,37,38,39,40,41,42,43,44,45] * CE 15 is refined into CE [46,47] * CE 14 is refined into CE [48,49,50,51] ### Cost equations --> "Loop" of (div)/3 * CEs [51] --> Loop 25 * CEs [50] --> Loop 26 * CEs [49] --> Loop 27 * CEs [48] --> Loop 28 * CEs [33,34] --> Loop 29 * CEs [35,36,38] --> Loop 30 * CEs [37,39,40,41,42,43,44,45,46,47] --> Loop 31 ### Ranking functions of CR div(V1,V,Out) * RF of phase [25,26]: [V1,V1-V+1] #### Partial ranking functions of CR div(V1,V,Out) * Partial RF of phase [25,26]: - RF of loop [25:1,26:1]: V1 V1-V+1 ### Specialization of cost equations start/4 * CE 2 is refined into CE [52,53,54,55,56,57,58,59,60,61,62,63,64,65] * CE 3 is refined into CE [66] * CE 1 is refined into CE [67] * CE 4 is refined into CE [68] * CE 5 is refined into CE [69,70,71,72,73] * CE 6 is refined into CE [74,75,76] * CE 7 is refined into CE [77,78] * CE 8 is refined into CE [79,80,81,82] ### Cost equations --> "Loop" of start/4 * CEs [70,74,80] --> Loop 32 * CEs [52,53,54,55,56,57,58,59,60,61,62,63,64,65] --> Loop 33 * CEs [66] --> Loop 34 * CEs [68] --> Loop 35 * CEs [67,69,71,72,73,75,76,77,78,79,81,82] --> Loop 36 ### Ranking functions of CR start(V1,V,V15,V18) #### Partial ranking functions of CR start(V1,V,V15,V18) Computing Bounds ===================================== #### Cost of chains of ge(V1,V,Out): * Chain [[16],19]: 1*it(16)+1 Such that:it(16) =< V1 with precondition: [Out=1,V1>=1,V>=V1+1] * Chain [[16],18]: 1*it(16)+1 Such that:it(16) =< V with precondition: [Out=2,V>=1,V1>=V] * Chain [[16],17]: 1*it(16)+0 Such that:it(16) =< V with precondition: [Out=0,V1>=1,V>=1] * Chain [19]: 1 with precondition: [V1=0,Out=1,V>=1] * Chain [18]: 1 with precondition: [V=0,Out=2,V1>=0] * Chain [17]: 0 with precondition: [Out=0,V1>=0,V>=0] #### Cost of chains of fun(V1,Out): * Chain [21]: 1 with precondition: [V1+1=Out,V1>=0] * Chain [20]: 1 with precondition: [V1=Out,V1>=0] #### Cost of chains of minus(V1,V,Out): * Chain [[22],24]: 1*it(22)+1 Such that:it(22) =< V with precondition: [Out=0,V1>=1,V>=1] * Chain [[22],23]: 1*it(22)+1 Such that:it(22) =< V with precondition: [V1=Out+V,V>=1,V1>=V] * Chain [24]: 1 with precondition: [Out=0,V1>=0,V>=0] * Chain [23]: 1 with precondition: [V=0,V1=Out,V1>=0] #### Cost of chains of div(V1,V,Out): * Chain [[25,26],31]: 12*it(25)+10*s(3)+4*s(5)+7*s(7)+2*s(32)+4 Such that:aux(1) =< 1 aux(9) =< V1-V+1 aux(3) =< V aux(12) =< V1 s(3) =< aux(1) s(7) =< aux(12) s(5) =< aux(3) aux(6) =< aux(12) it(25) =< aux(12) aux(6) =< aux(9) it(25) =< aux(9) s(32) =< aux(6) with precondition: [V>=1,Out>=0,V1>=V,V1+1>=Out+V] * Chain [[25,26],28,31]: 12*it(25)+11*s(3)+6*s(5)+2*s(32)+4*s(33)+10 Such that:aux(14) =< 1 aux(8) =< V1 aux(9) =< V1-V+1 aux(15) =< V aux(16) =< V1-V s(3) =< aux(14) s(5) =< aux(15) aux(6) =< aux(8) it(25) =< aux(8) s(34) =< aux(8) aux(6) =< aux(9) it(25) =< aux(9) aux(6) =< aux(16) it(25) =< aux(16) s(34) =< aux(16) s(32) =< aux(6) s(33) =< s(34) with precondition: [V>=1,Out>=1,V1>=2*V,V1+2>=2*V+Out] * Chain [[25,26],27,31]: 12*it(25)+11*s(3)+6*s(5)+2*s(32)+4*s(33)+10 Such that:aux(18) =< 1 aux(8) =< V1 aux(9) =< V1-V+1 aux(19) =< V aux(20) =< V1-V s(3) =< aux(18) s(5) =< aux(19) aux(6) =< aux(8) it(25) =< aux(8) s(34) =< aux(8) aux(6) =< aux(9) it(25) =< aux(9) aux(6) =< aux(20) it(25) =< aux(20) s(34) =< aux(20) s(32) =< aux(6) s(33) =< s(34) with precondition: [V>=1,Out>=0,V1>=2*V,V1+1>=2*V+Out] * Chain [31]: 10*s(3)+4*s(5)+3*s(7)+4 Such that:aux(1) =< 1 aux(2) =< V1 aux(3) =< V s(3) =< aux(1) s(7) =< aux(2) s(5) =< aux(3) with precondition: [Out=0,V1>=0,V>=0] * Chain [30]: 4 with precondition: [V=0,Out=0,V1>=0] * Chain [29]: 4 with precondition: [V=0,Out=1,V1>=0] * Chain [28,31]: 11*s(3)+6*s(5)+10 Such that:aux(14) =< 1 aux(15) =< V s(3) =< aux(14) s(5) =< aux(15) with precondition: [Out=1,V>=1,V1>=V] * Chain [27,31]: 11*s(3)+6*s(5)+10 Such that:aux(18) =< 1 aux(19) =< V s(3) =< aux(18) s(5) =< aux(19) with precondition: [Out=0,V>=1,V1>=V] #### Cost of chains of start(V1,V,V15,V18): * Chain [36]: 36*s(83)+11*s(84)+64*s(91)+24*s(102)+4*s(104)+8*s(105)+12*s(108)+2*s(109)+10 Such that:aux(27) =< 1 aux(28) =< V1 aux(29) =< V1-V aux(30) =< V1-V+1 aux(31) =< V s(84) =< aux(28) s(83) =< aux(31) s(91) =< aux(27) s(101) =< aux(28) s(102) =< aux(28) s(103) =< aux(28) s(101) =< aux(30) s(102) =< aux(30) s(101) =< aux(29) s(102) =< aux(29) s(103) =< aux(29) s(104) =< s(101) s(105) =< s(103) s(107) =< aux(28) s(108) =< aux(28) s(107) =< aux(30) s(108) =< aux(30) s(109) =< s(107) with precondition: [V1>=0] * Chain [35]: 1 with precondition: [V1=1,V>=0,V15>=0,V18>=0] * Chain [34]: 1 with precondition: [V1=2,V=1,V15>=0,V18>=0] * Chain [33]: 212*s(125)+6*s(127)+92*s(134)+20*s(156)+48*s(173)+8*s(175)+16*s(176)+24*s(179)+4*s(180)+13 Such that:aux(40) =< 1 aux(41) =< V15 aux(42) =< V15-2*V18 aux(43) =< V15-2*V18+1 aux(44) =< V15-V18 aux(45) =< V18 s(125) =< aux(40) s(127) =< aux(41) s(134) =< aux(45) s(156) =< aux(44) s(172) =< aux(44) s(173) =< aux(44) s(174) =< aux(44) s(172) =< aux(43) s(173) =< aux(43) s(172) =< aux(42) s(173) =< aux(42) s(174) =< aux(42) s(175) =< s(172) s(176) =< s(174) s(178) =< aux(44) s(179) =< aux(44) s(178) =< aux(43) s(179) =< aux(43) s(180) =< s(178) with precondition: [V1=2,V=2,V15>=0,V18>=0] * Chain [32]: 4 with precondition: [V=0,V1>=0] Closed-form bounds of start(V1,V,V15,V18): ------------------------------------- * Chain [36] with precondition: [V1>=0] - Upper bound: 61*V1+74+nat(V)*36 - Complexity: n * Chain [35] with precondition: [V1=1,V>=0,V15>=0,V18>=0] - Upper bound: 1 - Complexity: constant * Chain [34] with precondition: [V1=2,V=1,V15>=0,V18>=0] - Upper bound: 1 - Complexity: constant * Chain [33] with precondition: [V1=2,V=2,V15>=0,V18>=0] - Upper bound: 6*V15+92*V18+225+nat(V15-V18)*120 - Complexity: n * Chain [32] with precondition: [V=0,V1>=0] - Upper bound: 4 - Complexity: constant ### Maximum cost of start(V1,V,V15,V18): max([3,61*V1+73+nat(V)*36,nat(V15)*6+224+nat(V18)*92+nat(V15-V18)*120])+1 Asymptotic class: n * Total analysis performed in 536 ms. ---------------------------------------- (10) BOUNDS(1, n^1) ---------------------------------------- (11) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (12) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) minus(x, 0') -> x minus(0', y) -> 0' minus(s(x), s(y)) -> minus(x, y) id_inc(x) -> x id_inc(x) -> s(x) div(x, y) -> if(ge(y, s(0')), ge(x, y), x, y) if(false, b, x, y) -> div_by_zero if(true, false, x, y) -> 0' if(true, true, x, y) -> id_inc(div(minus(x, y), y)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (13) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (14) Obligation: Innermost TRS: Rules: ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) minus(x, 0') -> x minus(0', y) -> 0' minus(s(x), s(y)) -> minus(x, y) id_inc(x) -> x id_inc(x) -> s(x) div(x, y) -> if(ge(y, s(0')), ge(x, y), x, y) if(false, b, x, y) -> div_by_zero if(true, false, x, y) -> 0' if(true, true, x, y) -> id_inc(div(minus(x, y), y)) Types: ge :: 0':s:div_by_zero -> 0':s:div_by_zero -> true:false 0' :: 0':s:div_by_zero true :: true:false s :: 0':s:div_by_zero -> 0':s:div_by_zero false :: true:false minus :: 0':s:div_by_zero -> 0':s:div_by_zero -> 0':s:div_by_zero id_inc :: 0':s:div_by_zero -> 0':s:div_by_zero div :: 0':s:div_by_zero -> 0':s:div_by_zero -> 0':s:div_by_zero if :: true:false -> true:false -> 0':s:div_by_zero -> 0':s:div_by_zero -> 0':s:div_by_zero div_by_zero :: 0':s:div_by_zero hole_true:false1_0 :: true:false hole_0':s:div_by_zero2_0 :: 0':s:div_by_zero gen_0':s:div_by_zero3_0 :: Nat -> 0':s:div_by_zero ---------------------------------------- (15) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: ge, minus, div They will be analysed ascendingly in the following order: ge < div minus < div ---------------------------------------- (16) Obligation: Innermost TRS: Rules: ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) minus(x, 0') -> x minus(0', y) -> 0' minus(s(x), s(y)) -> minus(x, y) id_inc(x) -> x id_inc(x) -> s(x) div(x, y) -> if(ge(y, s(0')), ge(x, y), x, y) if(false, b, x, y) -> div_by_zero if(true, false, x, y) -> 0' if(true, true, x, y) -> id_inc(div(minus(x, y), y)) Types: ge :: 0':s:div_by_zero -> 0':s:div_by_zero -> true:false 0' :: 0':s:div_by_zero true :: true:false s :: 0':s:div_by_zero -> 0':s:div_by_zero false :: true:false minus :: 0':s:div_by_zero -> 0':s:div_by_zero -> 0':s:div_by_zero id_inc :: 0':s:div_by_zero -> 0':s:div_by_zero div :: 0':s:div_by_zero -> 0':s:div_by_zero -> 0':s:div_by_zero if :: true:false -> true:false -> 0':s:div_by_zero -> 0':s:div_by_zero -> 0':s:div_by_zero div_by_zero :: 0':s:div_by_zero hole_true:false1_0 :: true:false hole_0':s:div_by_zero2_0 :: 0':s:div_by_zero gen_0':s:div_by_zero3_0 :: Nat -> 0':s:div_by_zero Generator Equations: gen_0':s:div_by_zero3_0(0) <=> 0' gen_0':s:div_by_zero3_0(+(x, 1)) <=> s(gen_0':s:div_by_zero3_0(x)) The following defined symbols remain to be analysed: ge, minus, div They will be analysed ascendingly in the following order: ge < div minus < div ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ge(gen_0':s:div_by_zero3_0(n5_0), gen_0':s:div_by_zero3_0(n5_0)) -> true, rt in Omega(1 + n5_0) Induction Base: ge(gen_0':s:div_by_zero3_0(0), gen_0':s:div_by_zero3_0(0)) ->_R^Omega(1) true Induction Step: ge(gen_0':s:div_by_zero3_0(+(n5_0, 1)), gen_0':s:div_by_zero3_0(+(n5_0, 1))) ->_R^Omega(1) ge(gen_0':s:div_by_zero3_0(n5_0), gen_0':s:div_by_zero3_0(n5_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (18) Complex Obligation (BEST) ---------------------------------------- (19) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) minus(x, 0') -> x minus(0', y) -> 0' minus(s(x), s(y)) -> minus(x, y) id_inc(x) -> x id_inc(x) -> s(x) div(x, y) -> if(ge(y, s(0')), ge(x, y), x, y) if(false, b, x, y) -> div_by_zero if(true, false, x, y) -> 0' if(true, true, x, y) -> id_inc(div(minus(x, y), y)) Types: ge :: 0':s:div_by_zero -> 0':s:div_by_zero -> true:false 0' :: 0':s:div_by_zero true :: true:false s :: 0':s:div_by_zero -> 0':s:div_by_zero false :: true:false minus :: 0':s:div_by_zero -> 0':s:div_by_zero -> 0':s:div_by_zero id_inc :: 0':s:div_by_zero -> 0':s:div_by_zero div :: 0':s:div_by_zero -> 0':s:div_by_zero -> 0':s:div_by_zero if :: true:false -> true:false -> 0':s:div_by_zero -> 0':s:div_by_zero -> 0':s:div_by_zero div_by_zero :: 0':s:div_by_zero hole_true:false1_0 :: true:false hole_0':s:div_by_zero2_0 :: 0':s:div_by_zero gen_0':s:div_by_zero3_0 :: Nat -> 0':s:div_by_zero Generator Equations: gen_0':s:div_by_zero3_0(0) <=> 0' gen_0':s:div_by_zero3_0(+(x, 1)) <=> s(gen_0':s:div_by_zero3_0(x)) The following defined symbols remain to be analysed: ge, minus, div They will be analysed ascendingly in the following order: ge < div minus < div ---------------------------------------- (20) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (21) BOUNDS(n^1, INF) ---------------------------------------- (22) Obligation: Innermost TRS: Rules: ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) minus(x, 0') -> x minus(0', y) -> 0' minus(s(x), s(y)) -> minus(x, y) id_inc(x) -> x id_inc(x) -> s(x) div(x, y) -> if(ge(y, s(0')), ge(x, y), x, y) if(false, b, x, y) -> div_by_zero if(true, false, x, y) -> 0' if(true, true, x, y) -> id_inc(div(minus(x, y), y)) Types: ge :: 0':s:div_by_zero -> 0':s:div_by_zero -> true:false 0' :: 0':s:div_by_zero true :: true:false s :: 0':s:div_by_zero -> 0':s:div_by_zero false :: true:false minus :: 0':s:div_by_zero -> 0':s:div_by_zero -> 0':s:div_by_zero id_inc :: 0':s:div_by_zero -> 0':s:div_by_zero div :: 0':s:div_by_zero -> 0':s:div_by_zero -> 0':s:div_by_zero if :: true:false -> true:false -> 0':s:div_by_zero -> 0':s:div_by_zero -> 0':s:div_by_zero div_by_zero :: 0':s:div_by_zero hole_true:false1_0 :: true:false hole_0':s:div_by_zero2_0 :: 0':s:div_by_zero gen_0':s:div_by_zero3_0 :: Nat -> 0':s:div_by_zero Lemmas: ge(gen_0':s:div_by_zero3_0(n5_0), gen_0':s:div_by_zero3_0(n5_0)) -> true, rt in Omega(1 + n5_0) Generator Equations: gen_0':s:div_by_zero3_0(0) <=> 0' gen_0':s:div_by_zero3_0(+(x, 1)) <=> s(gen_0':s:div_by_zero3_0(x)) The following defined symbols remain to be analysed: minus, div They will be analysed ascendingly in the following order: minus < div ---------------------------------------- (23) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: minus(gen_0':s:div_by_zero3_0(n317_0), gen_0':s:div_by_zero3_0(n317_0)) -> gen_0':s:div_by_zero3_0(0), rt in Omega(1 + n317_0) Induction Base: minus(gen_0':s:div_by_zero3_0(0), gen_0':s:div_by_zero3_0(0)) ->_R^Omega(1) gen_0':s:div_by_zero3_0(0) Induction Step: minus(gen_0':s:div_by_zero3_0(+(n317_0, 1)), gen_0':s:div_by_zero3_0(+(n317_0, 1))) ->_R^Omega(1) minus(gen_0':s:div_by_zero3_0(n317_0), gen_0':s:div_by_zero3_0(n317_0)) ->_IH gen_0':s:div_by_zero3_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (24) Obligation: Innermost TRS: Rules: ge(x, 0') -> true ge(0', s(y)) -> false ge(s(x), s(y)) -> ge(x, y) minus(x, 0') -> x minus(0', y) -> 0' minus(s(x), s(y)) -> minus(x, y) id_inc(x) -> x id_inc(x) -> s(x) div(x, y) -> if(ge(y, s(0')), ge(x, y), x, y) if(false, b, x, y) -> div_by_zero if(true, false, x, y) -> 0' if(true, true, x, y) -> id_inc(div(minus(x, y), y)) Types: ge :: 0':s:div_by_zero -> 0':s:div_by_zero -> true:false 0' :: 0':s:div_by_zero true :: true:false s :: 0':s:div_by_zero -> 0':s:div_by_zero false :: true:false minus :: 0':s:div_by_zero -> 0':s:div_by_zero -> 0':s:div_by_zero id_inc :: 0':s:div_by_zero -> 0':s:div_by_zero div :: 0':s:div_by_zero -> 0':s:div_by_zero -> 0':s:div_by_zero if :: true:false -> true:false -> 0':s:div_by_zero -> 0':s:div_by_zero -> 0':s:div_by_zero div_by_zero :: 0':s:div_by_zero hole_true:false1_0 :: true:false hole_0':s:div_by_zero2_0 :: 0':s:div_by_zero gen_0':s:div_by_zero3_0 :: Nat -> 0':s:div_by_zero Lemmas: ge(gen_0':s:div_by_zero3_0(n5_0), gen_0':s:div_by_zero3_0(n5_0)) -> true, rt in Omega(1 + n5_0) minus(gen_0':s:div_by_zero3_0(n317_0), gen_0':s:div_by_zero3_0(n317_0)) -> gen_0':s:div_by_zero3_0(0), rt in Omega(1 + n317_0) Generator Equations: gen_0':s:div_by_zero3_0(0) <=> 0' gen_0':s:div_by_zero3_0(+(x, 1)) <=> s(gen_0':s:div_by_zero3_0(x)) The following defined symbols remain to be analysed: div