/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) or(true, y) -> true or(false, y) -> y and(true, y) -> y and(false, y) -> false size(empty) -> 0 size(edge(x, y, i)) -> s(size(i)) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) reachable(x, y, i) -> reach(x, y, 0, i, i) reach(x, y, c, i, j) -> if1(eq(x, y), x, y, c, i, j) if1(true, x, y, c, i, j) -> true if1(false, x, y, c, i, j) -> if2(le(c, size(j)), x, y, c, i, j) if2(false, x, y, c, i, j) -> false if2(true, x, y, c, empty, j) -> false if2(true, x, y, c, edge(u, v, i), j) -> or(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) or(true, y) -> true or(false, y) -> y and(true, y) -> y and(false, y) -> false size(empty) -> 0 size(edge(x, y, i)) -> s(size(i)) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) reachable(x, y, i) -> reach(x, y, 0, i, i) reach(x, y, c, i, j) -> if1(eq(x, y), x, y, c, i, j) if1(true, x, y, c, i, j) -> true if1(false, x, y, c, i, j) -> if2(le(c, size(j)), x, y, c, i, j) if2(false, x, y, c, i, j) -> false if2(true, x, y, c, empty, j) -> false if2(true, x, y, c, edge(u, v, i), j) -> or(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence if2(true, x, y, c, edge(u, v, i), j) ->^+ or(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j))) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [i / edge(u, v, i)]. The result substitution is [ ]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) or(true, y) -> true or(false, y) -> y and(true, y) -> y and(false, y) -> false size(empty) -> 0 size(edge(x, y, i)) -> s(size(i)) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) reachable(x, y, i) -> reach(x, y, 0, i, i) reach(x, y, c, i, j) -> if1(eq(x, y), x, y, c, i, j) if1(true, x, y, c, i, j) -> true if1(false, x, y, c, i, j) -> if2(le(c, size(j)), x, y, c, i, j) if2(false, x, y, c, i, j) -> false if2(true, x, y, c, empty, j) -> false if2(true, x, y, c, edge(u, v, i), j) -> or(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) or(true, y) -> true or(false, y) -> y and(true, y) -> y and(false, y) -> false size(empty) -> 0 size(edge(x, y, i)) -> s(size(i)) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) reachable(x, y, i) -> reach(x, y, 0, i, i) reach(x, y, c, i, j) -> if1(eq(x, y), x, y, c, i, j) if1(true, x, y, c, i, j) -> true if1(false, x, y, c, i, j) -> if2(le(c, size(j)), x, y, c, i, j) if2(false, x, y, c, i, j) -> false if2(true, x, y, c, empty, j) -> false if2(true, x, y, c, edge(u, v, i), j) -> or(if2(true, x, y, c, i, j), and(eq(x, u), reach(v, y, s(c), j, j))) S is empty. Rewrite Strategy: INNERMOST