/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (10) CpxRNTS (11) InliningProof [UPPER BOUND(ID), 56 ms] (12) CpxRNTS (13) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 4 ms] (16) CpxRNTS (17) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 395 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 120 ms] (22) CpxRNTS (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 149 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 15 ms] (28) CpxRNTS (29) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 299 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 95 ms] (34) CpxRNTS (35) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 128 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 3 ms] (40) CpxRNTS (41) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 1825 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 850 ms] (46) CpxRNTS (47) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (48) CpxRNTS (49) IntTrsBoundProof [UPPER BOUND(ID), 187 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (52) CpxRNTS (53) FinalProof [FINISHED, 0 ms] (54) BOUNDS(1, n^2) (55) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (56) TRS for Loop Detection (57) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (58) BEST (59) proven lower bound (60) LowerBoundPropagationProof [FINISHED, 0 ms] (61) BOUNDS(n^1, INF) (62) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: minus(0, y) -> 0 minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) plus(0, y) -> y plus(s(x), y) -> plus(x, s(y)) zero(s(x)) -> false zero(0) -> true p(s(x)) -> x div(x, y) -> quot(x, y, 0) quot(x, y, z) -> if(zero(x), x, y, plus(z, s(0))) if(true, x, y, z) -> p(z) if(false, x, s(y), z) -> quot(minus(x, s(y)), s(y), z) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: minus(0, y) -> 0 [1] minus(x, 0) -> x [1] minus(s(x), s(y)) -> minus(x, y) [1] plus(0, y) -> y [1] plus(s(x), y) -> plus(x, s(y)) [1] zero(s(x)) -> false [1] zero(0) -> true [1] p(s(x)) -> x [1] div(x, y) -> quot(x, y, 0) [1] quot(x, y, z) -> if(zero(x), x, y, plus(z, s(0))) [1] if(true, x, y, z) -> p(z) [1] if(false, x, s(y), z) -> quot(minus(x, s(y)), s(y), z) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: minus(0, y) -> 0 [1] minus(x, 0) -> x [1] minus(s(x), s(y)) -> minus(x, y) [1] plus(0, y) -> y [1] plus(s(x), y) -> plus(x, s(y)) [1] zero(s(x)) -> false [1] zero(0) -> true [1] p(s(x)) -> x [1] div(x, y) -> quot(x, y, 0) [1] quot(x, y, z) -> if(zero(x), x, y, plus(z, s(0))) [1] if(true, x, y, z) -> p(z) [1] if(false, x, s(y), z) -> quot(minus(x, s(y)), s(y), z) [1] The TRS has the following type information: minus :: 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s plus :: 0:s -> 0:s -> 0:s zero :: 0:s -> false:true false :: false:true true :: false:true p :: 0:s -> 0:s div :: 0:s -> 0:s -> 0:s quot :: 0:s -> 0:s -> 0:s -> 0:s if :: false:true -> 0:s -> 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: p_1 div_2 quot_3 if_4 (c) The following functions are completely defined: minus_2 zero_1 plus_2 Due to the following rules being added: none And the following fresh constants: none ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: minus(0, y) -> 0 [1] minus(x, 0) -> x [1] minus(s(x), s(y)) -> minus(x, y) [1] plus(0, y) -> y [1] plus(s(x), y) -> plus(x, s(y)) [1] zero(s(x)) -> false [1] zero(0) -> true [1] p(s(x)) -> x [1] div(x, y) -> quot(x, y, 0) [1] quot(x, y, z) -> if(zero(x), x, y, plus(z, s(0))) [1] if(true, x, y, z) -> p(z) [1] if(false, x, s(y), z) -> quot(minus(x, s(y)), s(y), z) [1] The TRS has the following type information: minus :: 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s plus :: 0:s -> 0:s -> 0:s zero :: 0:s -> false:true false :: false:true true :: false:true p :: 0:s -> 0:s div :: 0:s -> 0:s -> 0:s quot :: 0:s -> 0:s -> 0:s -> 0:s if :: false:true -> 0:s -> 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (7) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: minus(0, y) -> 0 [1] minus(x, 0) -> x [1] minus(s(x), s(y)) -> minus(x, y) [1] plus(0, y) -> y [1] plus(s(x), y) -> plus(x, s(y)) [1] zero(s(x)) -> false [1] zero(0) -> true [1] p(s(x)) -> x [1] div(x, y) -> quot(x, y, 0) [1] quot(s(x'), y, 0) -> if(false, s(x'), y, s(0)) [3] quot(s(x'), y, s(x'')) -> if(false, s(x'), y, plus(x'', s(s(0)))) [3] quot(0, y, 0) -> if(true, 0, y, s(0)) [3] quot(0, y, s(x1)) -> if(true, 0, y, plus(x1, s(s(0)))) [3] if(true, x, y, z) -> p(z) [1] if(false, 0, s(y), z) -> quot(0, s(y), z) [2] if(false, s(x2), s(y), z) -> quot(minus(x2, y), s(y), z) [2] The TRS has the following type information: minus :: 0:s -> 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s plus :: 0:s -> 0:s -> 0:s zero :: 0:s -> false:true false :: false:true true :: false:true p :: 0:s -> 0:s div :: 0:s -> 0:s -> 0:s quot :: 0:s -> 0:s -> 0:s -> 0:s if :: false:true -> 0:s -> 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 false => 0 true => 1 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(x, y, 0) :|: z' = x, z'' = y, x >= 0, y >= 0 if(z', z'', z1, z2) -{ 2 }-> quot(minus(x2, y), 1 + y, z) :|: z >= 0, z2 = z, y >= 0, z'' = 1 + x2, z1 = 1 + y, x2 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + y, z) :|: z'' = 0, z >= 0, z2 = z, y >= 0, z1 = 1 + y, z' = 0 if(z', z'', z1, z2) -{ 1 }-> p(z) :|: z1 = y, z >= 0, z2 = z, x >= 0, y >= 0, z'' = x, z' = 1 minus(z', z'') -{ 1 }-> x :|: z'' = 0, z' = x, x >= 0 minus(z', z'') -{ 1 }-> minus(x, y) :|: z' = 1 + x, x >= 0, y >= 0, z'' = 1 + y minus(z', z'') -{ 1 }-> 0 :|: z'' = y, y >= 0, z' = 0 p(z') -{ 1 }-> x :|: z' = 1 + x, x >= 0 plus(z', z'') -{ 1 }-> y :|: z'' = y, y >= 0, z' = 0 plus(z', z'') -{ 1 }-> plus(x, 1 + y) :|: z' = 1 + x, z'' = y, x >= 0, y >= 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, y, plus(x1, 1 + (1 + 0))) :|: x1 >= 0, z'' = y, y >= 0, z1 = 1 + x1, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, y, 1 + 0) :|: z1 = 0, z'' = y, y >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + x', y, plus(x'', 1 + (1 + 0))) :|: z1 = 1 + x'', z' = 1 + x', z'' = y, x' >= 0, y >= 0, x'' >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + x', y, 1 + 0) :|: z1 = 0, z' = 1 + x', z'' = y, x' >= 0, y >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' = 1 + x, x >= 0 ---------------------------------------- (11) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: p(z') -{ 1 }-> x :|: z' = 1 + x, x >= 0 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(x, y, 0) :|: z' = x, z'' = y, x >= 0, y >= 0 if(z', z'', z1, z2) -{ 2 }-> x' :|: z1 = y, z >= 0, z2 = z, x >= 0, y >= 0, z'' = x, z' = 1, z = 1 + x', x' >= 0 if(z', z'', z1, z2) -{ 2 }-> quot(minus(x2, y), 1 + y, z) :|: z >= 0, z2 = z, y >= 0, z'' = 1 + x2, z1 = 1 + y, x2 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + y, z) :|: z'' = 0, z >= 0, z2 = z, y >= 0, z1 = 1 + y, z' = 0 minus(z', z'') -{ 1 }-> x :|: z'' = 0, z' = x, x >= 0 minus(z', z'') -{ 1 }-> minus(x, y) :|: z' = 1 + x, x >= 0, y >= 0, z'' = 1 + y minus(z', z'') -{ 1 }-> 0 :|: z'' = y, y >= 0, z' = 0 p(z') -{ 1 }-> x :|: z' = 1 + x, x >= 0 plus(z', z'') -{ 1 }-> y :|: z'' = y, y >= 0, z' = 0 plus(z', z'') -{ 1 }-> plus(x, 1 + y) :|: z' = 1 + x, z'' = y, x >= 0, y >= 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, y, plus(x1, 1 + (1 + 0))) :|: x1 >= 0, z'' = y, y >= 0, z1 = 1 + x1, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, y, 1 + 0) :|: z1 = 0, z'' = y, y >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + x', y, plus(x'', 1 + (1 + 0))) :|: z1 = 1 + x'', z' = 1 + x', z'' = y, x' >= 0, y >= 0, x'' >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + x', y, 1 + 0) :|: z1 = 0, z' = 1 + x', z'' = y, x' >= 0, y >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' = 1 + x, x >= 0 ---------------------------------------- (13) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 2 }-> quot(minus(z'' - 1, z1 - 1), 1 + (z1 - 1), z2) :|: z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> minus(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> plus(z' - 1, 1 + z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', plus(z1 - 1, 1 + (1 + 0))) :|: z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', plus(z1 - 1, 1 + (1 + 0))) :|: z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 ---------------------------------------- (15) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { minus } { zero } { plus } { p } { if, quot } { div } ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 2 }-> quot(minus(z'' - 1, z1 - 1), 1 + (z1 - 1), z2) :|: z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> minus(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> plus(z' - 1, 1 + z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', plus(z1 - 1, 1 + (1 + 0))) :|: z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', plus(z1 - 1, 1 + (1 + 0))) :|: z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {minus}, {zero}, {plus}, {p}, {if,quot}, {div} ---------------------------------------- (17) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 2 }-> quot(minus(z'' - 1, z1 - 1), 1 + (z1 - 1), z2) :|: z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> minus(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> plus(z' - 1, 1 + z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', plus(z1 - 1, 1 + (1 + 0))) :|: z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', plus(z1 - 1, 1 + (1 + 0))) :|: z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {minus}, {zero}, {plus}, {p}, {if,quot}, {div} ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: minus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 2 }-> quot(minus(z'' - 1, z1 - 1), 1 + (z1 - 1), z2) :|: z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> minus(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> plus(z' - 1, 1 + z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', plus(z1 - 1, 1 + (1 + 0))) :|: z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', plus(z1 - 1, 1 + (1 + 0))) :|: z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {minus}, {zero}, {plus}, {p}, {if,quot}, {div} Previous analysis results are: minus: runtime: ?, size: O(n^1) [z'] ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: minus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z'' ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 2 }-> quot(minus(z'' - 1, z1 - 1), 1 + (z1 - 1), z2) :|: z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> minus(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> plus(z' - 1, 1 + z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', plus(z1 - 1, 1 + (1 + 0))) :|: z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', plus(z1 - 1, 1 + (1 + 0))) :|: z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {zero}, {plus}, {p}, {if,quot}, {div} Previous analysis results are: minus: runtime: O(n^1) [2 + z''], size: O(n^1) [z'] ---------------------------------------- (23) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 3 + z1 }-> quot(s', 1 + (z1 - 1), z2) :|: s' >= 0, s' <= z'' - 1, z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 2 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> plus(z' - 1, 1 + z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', plus(z1 - 1, 1 + (1 + 0))) :|: z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', plus(z1 - 1, 1 + (1 + 0))) :|: z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {zero}, {plus}, {p}, {if,quot}, {div} Previous analysis results are: minus: runtime: O(n^1) [2 + z''], size: O(n^1) [z'] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: zero after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 3 + z1 }-> quot(s', 1 + (z1 - 1), z2) :|: s' >= 0, s' <= z'' - 1, z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 2 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> plus(z' - 1, 1 + z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', plus(z1 - 1, 1 + (1 + 0))) :|: z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', plus(z1 - 1, 1 + (1 + 0))) :|: z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {zero}, {plus}, {p}, {if,quot}, {div} Previous analysis results are: minus: runtime: O(n^1) [2 + z''], size: O(n^1) [z'] zero: runtime: ?, size: O(1) [1] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: zero after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 3 + z1 }-> quot(s', 1 + (z1 - 1), z2) :|: s' >= 0, s' <= z'' - 1, z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 2 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> plus(z' - 1, 1 + z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', plus(z1 - 1, 1 + (1 + 0))) :|: z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', plus(z1 - 1, 1 + (1 + 0))) :|: z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {plus}, {p}, {if,quot}, {div} Previous analysis results are: minus: runtime: O(n^1) [2 + z''], size: O(n^1) [z'] zero: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (29) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 3 + z1 }-> quot(s', 1 + (z1 - 1), z2) :|: s' >= 0, s' <= z'' - 1, z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 2 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> plus(z' - 1, 1 + z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', plus(z1 - 1, 1 + (1 + 0))) :|: z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', plus(z1 - 1, 1 + (1 + 0))) :|: z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {plus}, {p}, {if,quot}, {div} Previous analysis results are: minus: runtime: O(n^1) [2 + z''], size: O(n^1) [z'] zero: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' + z'' ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 3 + z1 }-> quot(s', 1 + (z1 - 1), z2) :|: s' >= 0, s' <= z'' - 1, z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 2 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> plus(z' - 1, 1 + z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', plus(z1 - 1, 1 + (1 + 0))) :|: z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', plus(z1 - 1, 1 + (1 + 0))) :|: z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {plus}, {p}, {if,quot}, {div} Previous analysis results are: minus: runtime: O(n^1) [2 + z''], size: O(n^1) [z'] zero: runtime: O(1) [1], size: O(1) [1] plus: runtime: ?, size: O(n^1) [z' + z''] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 3 + z1 }-> quot(s', 1 + (z1 - 1), z2) :|: s' >= 0, s' <= z'' - 1, z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 2 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 plus(z', z'') -{ 1 }-> plus(z' - 1, 1 + z'') :|: z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', plus(z1 - 1, 1 + (1 + 0))) :|: z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', plus(z1 - 1, 1 + (1 + 0))) :|: z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {p}, {if,quot}, {div} Previous analysis results are: minus: runtime: O(n^1) [2 + z''], size: O(n^1) [z'] zero: runtime: O(1) [1], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] ---------------------------------------- (35) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 3 + z1 }-> quot(s', 1 + (z1 - 1), z2) :|: s' >= 0, s' <= z'' - 1, z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 2 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 + z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + (1 + z''), z' - 1 >= 0, z'' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 + z1 }-> if(1, 0, z'', s2) :|: s2 >= 0, s2 <= z1 - 1 + (1 + (1 + 0)), z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 + z1 }-> if(0, 1 + (z' - 1), z'', s1) :|: s1 >= 0, s1 <= z1 - 1 + (1 + (1 + 0)), z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {p}, {if,quot}, {div} Previous analysis results are: minus: runtime: O(n^1) [2 + z''], size: O(n^1) [z'] zero: runtime: O(1) [1], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: p after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 3 + z1 }-> quot(s', 1 + (z1 - 1), z2) :|: s' >= 0, s' <= z'' - 1, z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 2 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 + z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + (1 + z''), z' - 1 >= 0, z'' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 + z1 }-> if(1, 0, z'', s2) :|: s2 >= 0, s2 <= z1 - 1 + (1 + (1 + 0)), z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 + z1 }-> if(0, 1 + (z' - 1), z'', s1) :|: s1 >= 0, s1 <= z1 - 1 + (1 + (1 + 0)), z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {p}, {if,quot}, {div} Previous analysis results are: minus: runtime: O(n^1) [2 + z''], size: O(n^1) [z'] zero: runtime: O(1) [1], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] p: runtime: ?, size: O(n^1) [z'] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: p after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 3 + z1 }-> quot(s', 1 + (z1 - 1), z2) :|: s' >= 0, s' <= z'' - 1, z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 2 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 + z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + (1 + z''), z' - 1 >= 0, z'' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 + z1 }-> if(1, 0, z'', s2) :|: s2 >= 0, s2 <= z1 - 1 + (1 + (1 + 0)), z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 + z1 }-> if(0, 1 + (z' - 1), z'', s1) :|: s1 >= 0, s1 <= z1 - 1 + (1 + (1 + 0)), z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {if,quot}, {div} Previous analysis results are: minus: runtime: O(n^1) [2 + z''], size: O(n^1) [z'] zero: runtime: O(1) [1], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] p: runtime: O(1) [1], size: O(n^1) [z'] ---------------------------------------- (41) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 3 + z1 }-> quot(s', 1 + (z1 - 1), z2) :|: s' >= 0, s' <= z'' - 1, z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 2 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 + z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + (1 + z''), z' - 1 >= 0, z'' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 + z1 }-> if(1, 0, z'', s2) :|: s2 >= 0, s2 <= z1 - 1 + (1 + (1 + 0)), z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 + z1 }-> if(0, 1 + (z' - 1), z'', s1) :|: s1 >= 0, s1 <= z1 - 1 + (1 + (1 + 0)), z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {if,quot}, {div} Previous analysis results are: minus: runtime: O(n^1) [2 + z''], size: O(n^1) [z'] zero: runtime: O(1) [1], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] p: runtime: O(1) [1], size: O(n^1) [z'] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: if after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z'' + z2 Computed SIZE bound using CoFloCo for: quot after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z' + z1 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 3 + z1 }-> quot(s', 1 + (z1 - 1), z2) :|: s' >= 0, s' <= z'' - 1, z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 2 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 + z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + (1 + z''), z' - 1 >= 0, z'' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 + z1 }-> if(1, 0, z'', s2) :|: s2 >= 0, s2 <= z1 - 1 + (1 + (1 + 0)), z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 + z1 }-> if(0, 1 + (z' - 1), z'', s1) :|: s1 >= 0, s1 <= z1 - 1 + (1 + (1 + 0)), z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {if,quot}, {div} Previous analysis results are: minus: runtime: O(n^1) [2 + z''], size: O(n^1) [z'] zero: runtime: O(1) [1], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] p: runtime: O(1) [1], size: O(n^1) [z'] if: runtime: ?, size: O(n^1) [1 + z'' + z2] quot: runtime: ?, size: O(n^1) [2 + z' + z1] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: if after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 18 + 12*z'' + 2*z''*z1 + z''*z2 + z''^2 + 3*z1 + 2*z2 Computed RUNTIME bound using KoAT for: quot after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 92 + 26*z' + 4*z'*z'' + z'*z1 + 2*z'^2 + 12*z'' + 6*z1 ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 1 }-> quot(z', z'', 0) :|: z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 3 + z1 }-> quot(s', 1 + (z1 - 1), z2) :|: s' >= 0, s' <= z'' - 1, z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> quot(0, 1 + (z1 - 1), z2) :|: z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 2 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 + z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + (1 + z''), z' - 1 >= 0, z'' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 + z1 }-> if(1, 0, z'', s2) :|: s2 >= 0, s2 <= z1 - 1 + (1 + (1 + 0)), z1 - 1 >= 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 }-> if(1, 0, z'', 1 + 0) :|: z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 3 + z1 }-> if(0, 1 + (z' - 1), z'', s1) :|: s1 >= 0, s1 <= z1 - 1 + (1 + (1 + 0)), z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 3 }-> if(0, 1 + (z' - 1), z'', 1 + 0) :|: z1 = 0, z' - 1 >= 0, z'' >= 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {div} Previous analysis results are: minus: runtime: O(n^1) [2 + z''], size: O(n^1) [z'] zero: runtime: O(1) [1], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] p: runtime: O(1) [1], size: O(n^1) [z'] if: runtime: O(n^2) [18 + 12*z'' + 2*z''*z1 + z''*z2 + z''^2 + 3*z1 + 2*z2], size: O(n^1) [1 + z'' + z2] quot: runtime: O(n^2) [92 + 26*z' + 4*z'*z'' + z'*z1 + 2*z'^2 + 12*z'' + 6*z1], size: O(n^1) [2 + z' + z1] ---------------------------------------- (47) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 93 + 26*z' + 4*z'*z'' + 2*z'^2 + 12*z'' }-> s3 :|: s3 >= 0, s3 <= z' + 0 + 2, z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 94 + 12*z1 + 6*z2 }-> s8 :|: s8 >= 0, s8 <= 0 + z2 + 2, z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 95 + 26*s' + 4*s'*z1 + s'*z2 + 2*s'^2 + 13*z1 + 6*z2 }-> s9 :|: s9 >= 0, s9 <= s' + z2 + 2, s' >= 0, s' <= z'' - 1, z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 2 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 + z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + (1 + z''), z' - 1 >= 0, z'' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 quot(z', z'', z1) -{ 23 + 13*z' + 2*z'*z'' + z'^2 + 3*z'' }-> s4 :|: s4 >= 0, s4 <= 1 + 0 + 1 + (1 + (z' - 1)), z1 = 0, z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 21 + 2*s1 + s1*z' + 12*z' + 2*z'*z'' + z'^2 + 3*z'' + z1 }-> s5 :|: s5 >= 0, s5 <= s1 + 1 + (1 + (z' - 1)), s1 >= 0, s1 <= z1 - 1 + (1 + (1 + 0)), z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 23 + 3*z'' }-> s6 :|: s6 >= 0, s6 <= 1 + 0 + 1 + 0, z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 21 + 2*s2 + 3*z'' + z1 }-> s7 :|: s7 >= 0, s7 <= s2 + 1 + 0, s2 >= 0, s2 <= z1 - 1 + (1 + (1 + 0)), z1 - 1 >= 0, z'' >= 0, z' = 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {div} Previous analysis results are: minus: runtime: O(n^1) [2 + z''], size: O(n^1) [z'] zero: runtime: O(1) [1], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] p: runtime: O(1) [1], size: O(n^1) [z'] if: runtime: O(n^2) [18 + 12*z'' + 2*z''*z1 + z''*z2 + z''^2 + 3*z1 + 2*z2], size: O(n^1) [1 + z'' + z2] quot: runtime: O(n^2) [92 + 26*z' + 4*z'*z'' + z'*z1 + 2*z'^2 + 12*z'' + 6*z1], size: O(n^1) [2 + z' + z1] ---------------------------------------- (49) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: div after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z' ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 93 + 26*z' + 4*z'*z'' + 2*z'^2 + 12*z'' }-> s3 :|: s3 >= 0, s3 <= z' + 0 + 2, z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 94 + 12*z1 + 6*z2 }-> s8 :|: s8 >= 0, s8 <= 0 + z2 + 2, z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 95 + 26*s' + 4*s'*z1 + s'*z2 + 2*s'^2 + 13*z1 + 6*z2 }-> s9 :|: s9 >= 0, s9 <= s' + z2 + 2, s' >= 0, s' <= z'' - 1, z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 2 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 + z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + (1 + z''), z' - 1 >= 0, z'' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 quot(z', z'', z1) -{ 23 + 13*z' + 2*z'*z'' + z'^2 + 3*z'' }-> s4 :|: s4 >= 0, s4 <= 1 + 0 + 1 + (1 + (z' - 1)), z1 = 0, z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 21 + 2*s1 + s1*z' + 12*z' + 2*z'*z'' + z'^2 + 3*z'' + z1 }-> s5 :|: s5 >= 0, s5 <= s1 + 1 + (1 + (z' - 1)), s1 >= 0, s1 <= z1 - 1 + (1 + (1 + 0)), z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 23 + 3*z'' }-> s6 :|: s6 >= 0, s6 <= 1 + 0 + 1 + 0, z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 21 + 2*s2 + 3*z'' + z1 }-> s7 :|: s7 >= 0, s7 <= s2 + 1 + 0, s2 >= 0, s2 <= z1 - 1 + (1 + (1 + 0)), z1 - 1 >= 0, z'' >= 0, z' = 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: {div} Previous analysis results are: minus: runtime: O(n^1) [2 + z''], size: O(n^1) [z'] zero: runtime: O(1) [1], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] p: runtime: O(1) [1], size: O(n^1) [z'] if: runtime: O(n^2) [18 + 12*z'' + 2*z''*z1 + z''*z2 + z''^2 + 3*z1 + 2*z2], size: O(n^1) [1 + z'' + z2] quot: runtime: O(n^2) [92 + 26*z' + 4*z'*z'' + z'*z1 + 2*z'^2 + 12*z'' + 6*z1], size: O(n^1) [2 + z' + z1] div: runtime: ?, size: O(n^1) [2 + z'] ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: div after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 93 + 26*z' + 4*z'*z'' + 2*z'^2 + 12*z'' ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: div(z', z'') -{ 93 + 26*z' + 4*z'*z'' + 2*z'^2 + 12*z'' }-> s3 :|: s3 >= 0, s3 <= z' + 0 + 2, z' >= 0, z'' >= 0 if(z', z'', z1, z2) -{ 94 + 12*z1 + 6*z2 }-> s8 :|: s8 >= 0, s8 <= 0 + z2 + 2, z'' = 0, z2 >= 0, z1 - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 95 + 26*s' + 4*s'*z1 + s'*z2 + 2*s'^2 + 13*z1 + 6*z2 }-> s9 :|: s9 >= 0, s9 <= s' + z2 + 2, s' >= 0, s' <= z'' - 1, z2 >= 0, z1 - 1 >= 0, z'' - 1 >= 0, z' = 0 if(z', z'', z1, z2) -{ 2 }-> z2 - 1 :|: z2 >= 0, z'' >= 0, z1 >= 0, z' = 1, z2 - 1 >= 0 minus(z', z'') -{ 2 + z'' }-> s :|: s >= 0, s <= z' - 1, z' - 1 >= 0, z'' - 1 >= 0 minus(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 minus(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 plus(z', z'') -{ 1 + z' }-> s'' :|: s'' >= 0, s'' <= z' - 1 + (1 + z''), z' - 1 >= 0, z'' >= 0 plus(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 quot(z', z'', z1) -{ 23 + 13*z' + 2*z'*z'' + z'^2 + 3*z'' }-> s4 :|: s4 >= 0, s4 <= 1 + 0 + 1 + (1 + (z' - 1)), z1 = 0, z' - 1 >= 0, z'' >= 0 quot(z', z'', z1) -{ 21 + 2*s1 + s1*z' + 12*z' + 2*z'*z'' + z'^2 + 3*z'' + z1 }-> s5 :|: s5 >= 0, s5 <= s1 + 1 + (1 + (z' - 1)), s1 >= 0, s1 <= z1 - 1 + (1 + (1 + 0)), z' - 1 >= 0, z'' >= 0, z1 - 1 >= 0 quot(z', z'', z1) -{ 23 + 3*z'' }-> s6 :|: s6 >= 0, s6 <= 1 + 0 + 1 + 0, z1 = 0, z'' >= 0, z' = 0 quot(z', z'', z1) -{ 21 + 2*s2 + 3*z'' + z1 }-> s7 :|: s7 >= 0, s7 <= s2 + 1 + 0, s2 >= 0, s2 <= z1 - 1 + (1 + (1 + 0)), z1 - 1 >= 0, z'' >= 0, z' = 0 zero(z') -{ 1 }-> 1 :|: z' = 0 zero(z') -{ 1 }-> 0 :|: z' - 1 >= 0 Function symbols to be analyzed: Previous analysis results are: minus: runtime: O(n^1) [2 + z''], size: O(n^1) [z'] zero: runtime: O(1) [1], size: O(1) [1] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] p: runtime: O(1) [1], size: O(n^1) [z'] if: runtime: O(n^2) [18 + 12*z'' + 2*z''*z1 + z''*z2 + z''^2 + 3*z1 + 2*z2], size: O(n^1) [1 + z'' + z2] quot: runtime: O(n^2) [92 + 26*z' + 4*z'*z'' + z'*z1 + 2*z'^2 + 12*z'' + 6*z1], size: O(n^1) [2 + z' + z1] div: runtime: O(n^2) [93 + 26*z' + 4*z'*z'' + 2*z'^2 + 12*z''], size: O(n^1) [2 + z'] ---------------------------------------- (53) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (54) BOUNDS(1, n^2) ---------------------------------------- (55) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (56) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: minus(0, y) -> 0 minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) plus(0, y) -> y plus(s(x), y) -> plus(x, s(y)) zero(s(x)) -> false zero(0) -> true p(s(x)) -> x div(x, y) -> quot(x, y, 0) quot(x, y, z) -> if(zero(x), x, y, plus(z, s(0))) if(true, x, y, z) -> p(z) if(false, x, s(y), z) -> quot(minus(x, s(y)), s(y), z) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (57) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence minus(s(x), s(y)) ->^+ minus(x, y) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x / s(x), y / s(y)]. The result substitution is [ ]. ---------------------------------------- (58) Complex Obligation (BEST) ---------------------------------------- (59) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: minus(0, y) -> 0 minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) plus(0, y) -> y plus(s(x), y) -> plus(x, s(y)) zero(s(x)) -> false zero(0) -> true p(s(x)) -> x div(x, y) -> quot(x, y, 0) quot(x, y, z) -> if(zero(x), x, y, plus(z, s(0))) if(true, x, y, z) -> p(z) if(false, x, s(y), z) -> quot(minus(x, s(y)), s(y), z) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (60) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (61) BOUNDS(n^1, INF) ---------------------------------------- (62) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: minus(0, y) -> 0 minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) plus(0, y) -> y plus(s(x), y) -> plus(x, s(y)) zero(s(x)) -> false zero(0) -> true p(s(x)) -> x div(x, y) -> quot(x, y, 0) quot(x, y, z) -> if(zero(x), x, y, plus(z, s(0))) if(true, x, y, z) -> p(z) if(false, x, s(y), z) -> quot(minus(x, s(y)), s(y), z) S is empty. Rewrite Strategy: INNERMOST