/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 266 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 72 ms] (14) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: 1024 -> 1024_1(0) 1024_1(x) -> if(lt(x, 10), x) if(true, x) -> double(1024_1(s(x))) if(false, x) -> s(0) lt(0, s(y)) -> true lt(x, 0) -> false lt(s(x), s(y)) -> lt(x, y) double(0) -> 0 double(s(x)) -> s(s(double(x))) 10 -> double(s(double(s(s(0))))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: 1024' -> 1024_1(0') 1024_1(x) -> if(lt(x, 10'), x) if(true, x) -> double(1024_1(s(x))) if(false, x) -> s(0') lt(0', s(y)) -> true lt(x, 0') -> false lt(s(x), s(y)) -> lt(x, y) double(0') -> 0' double(s(x)) -> s(s(double(x))) 10' -> double(s(double(s(s(0'))))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Innermost TRS: Rules: 1024' -> 1024_1(0') 1024_1(x) -> if(lt(x, 10'), x) if(true, x) -> double(1024_1(s(x))) if(false, x) -> s(0') lt(0', s(y)) -> true lt(x, 0') -> false lt(s(x), s(y)) -> lt(x, y) double(0') -> 0' double(s(x)) -> s(s(double(x))) 10' -> double(s(double(s(s(0'))))) Types: 1024' :: 0':s 1024_1 :: 0':s -> 0':s 0' :: 0':s if :: true:false -> 0':s -> 0':s lt :: 0':s -> 0':s -> true:false 10' :: 0':s true :: true:false double :: 0':s -> 0':s s :: 0':s -> 0':s false :: true:false hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: 1024_1, lt, double They will be analysed ascendingly in the following order: lt < 1024_1 double < 1024_1 ---------------------------------------- (6) Obligation: Innermost TRS: Rules: 1024' -> 1024_1(0') 1024_1(x) -> if(lt(x, 10'), x) if(true, x) -> double(1024_1(s(x))) if(false, x) -> s(0') lt(0', s(y)) -> true lt(x, 0') -> false lt(s(x), s(y)) -> lt(x, y) double(0') -> 0' double(s(x)) -> s(s(double(x))) 10' -> double(s(double(s(s(0'))))) Types: 1024' :: 0':s 1024_1 :: 0':s -> 0':s 0' :: 0':s if :: true:false -> 0':s -> 0':s lt :: 0':s -> 0':s -> true:false 10' :: 0':s true :: true:false double :: 0':s -> 0':s s :: 0':s -> 0':s false :: true:false hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: lt, 1024_1, double They will be analysed ascendingly in the following order: lt < 1024_1 double < 1024_1 ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) -> true, rt in Omega(1 + n5_0) Induction Base: lt(gen_0':s3_0(0), gen_0':s3_0(+(1, 0))) ->_R^Omega(1) true Induction Step: lt(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(1, +(n5_0, 1)))) ->_R^Omega(1) lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: 1024' -> 1024_1(0') 1024_1(x) -> if(lt(x, 10'), x) if(true, x) -> double(1024_1(s(x))) if(false, x) -> s(0') lt(0', s(y)) -> true lt(x, 0') -> false lt(s(x), s(y)) -> lt(x, y) double(0') -> 0' double(s(x)) -> s(s(double(x))) 10' -> double(s(double(s(s(0'))))) Types: 1024' :: 0':s 1024_1 :: 0':s -> 0':s 0' :: 0':s if :: true:false -> 0':s -> 0':s lt :: 0':s -> 0':s -> true:false 10' :: 0':s true :: true:false double :: 0':s -> 0':s s :: 0':s -> 0':s false :: true:false hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: lt, 1024_1, double They will be analysed ascendingly in the following order: lt < 1024_1 double < 1024_1 ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Innermost TRS: Rules: 1024' -> 1024_1(0') 1024_1(x) -> if(lt(x, 10'), x) if(true, x) -> double(1024_1(s(x))) if(false, x) -> s(0') lt(0', s(y)) -> true lt(x, 0') -> false lt(s(x), s(y)) -> lt(x, y) double(0') -> 0' double(s(x)) -> s(s(double(x))) 10' -> double(s(double(s(s(0'))))) Types: 1024' :: 0':s 1024_1 :: 0':s -> 0':s 0' :: 0':s if :: true:false -> 0':s -> 0':s lt :: 0':s -> 0':s -> true:false 10' :: 0':s true :: true:false double :: 0':s -> 0':s s :: 0':s -> 0':s false :: true:false hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Lemmas: lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) -> true, rt in Omega(1 + n5_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: double, 1024_1 They will be analysed ascendingly in the following order: double < 1024_1 ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: double(gen_0':s3_0(n293_0)) -> gen_0':s3_0(*(2, n293_0)), rt in Omega(1 + n293_0) Induction Base: double(gen_0':s3_0(0)) ->_R^Omega(1) 0' Induction Step: double(gen_0':s3_0(+(n293_0, 1))) ->_R^Omega(1) s(s(double(gen_0':s3_0(n293_0)))) ->_IH s(s(gen_0':s3_0(*(2, c294_0)))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: Innermost TRS: Rules: 1024' -> 1024_1(0') 1024_1(x) -> if(lt(x, 10'), x) if(true, x) -> double(1024_1(s(x))) if(false, x) -> s(0') lt(0', s(y)) -> true lt(x, 0') -> false lt(s(x), s(y)) -> lt(x, y) double(0') -> 0' double(s(x)) -> s(s(double(x))) 10' -> double(s(double(s(s(0'))))) Types: 1024' :: 0':s 1024_1 :: 0':s -> 0':s 0' :: 0':s if :: true:false -> 0':s -> 0':s lt :: 0':s -> 0':s -> true:false 10' :: 0':s true :: true:false double :: 0':s -> 0':s s :: 0':s -> 0':s false :: true:false hole_0':s1_0 :: 0':s hole_true:false2_0 :: true:false gen_0':s3_0 :: Nat -> 0':s Lemmas: lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) -> true, rt in Omega(1 + n5_0) double(gen_0':s3_0(n293_0)) -> gen_0':s3_0(*(2, n293_0)), rt in Omega(1 + n293_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: 1024_1