/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 254 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 83 ms] (14) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: le(s(x), 0) -> false le(0, y) -> true le(s(x), s(y)) -> le(x, y) double(0) -> 0 double(s(x)) -> s(s(double(x))) log(0) -> logError log(s(x)) -> loop(s(x), s(0), 0) loop(x, s(y), z) -> if(le(x, s(y)), x, s(y), z) if(true, x, y, z) -> z if(false, x, y, z) -> loop(x, double(y), s(z)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: le(s(x), 0') -> false le(0', y) -> true le(s(x), s(y)) -> le(x, y) double(0') -> 0' double(s(x)) -> s(s(double(x))) log(0') -> logError log(s(x)) -> loop(s(x), s(0'), 0') loop(x, s(y), z) -> if(le(x, s(y)), x, s(y), z) if(true, x, y, z) -> z if(false, x, y, z) -> loop(x, double(y), s(z)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Innermost TRS: Rules: le(s(x), 0') -> false le(0', y) -> true le(s(x), s(y)) -> le(x, y) double(0') -> 0' double(s(x)) -> s(s(double(x))) log(0') -> logError log(s(x)) -> loop(s(x), s(0'), 0') loop(x, s(y), z) -> if(le(x, s(y)), x, s(y), z) if(true, x, y, z) -> z if(false, x, y, z) -> loop(x, double(y), s(z)) Types: le :: s:0':logError -> s:0':logError -> false:true s :: s:0':logError -> s:0':logError 0' :: s:0':logError false :: false:true true :: false:true double :: s:0':logError -> s:0':logError log :: s:0':logError -> s:0':logError logError :: s:0':logError loop :: s:0':logError -> s:0':logError -> s:0':logError -> s:0':logError if :: false:true -> s:0':logError -> s:0':logError -> s:0':logError -> s:0':logError hole_false:true1_0 :: false:true hole_s:0':logError2_0 :: s:0':logError gen_s:0':logError3_0 :: Nat -> s:0':logError ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: le, double, loop They will be analysed ascendingly in the following order: le < loop double < loop ---------------------------------------- (6) Obligation: Innermost TRS: Rules: le(s(x), 0') -> false le(0', y) -> true le(s(x), s(y)) -> le(x, y) double(0') -> 0' double(s(x)) -> s(s(double(x))) log(0') -> logError log(s(x)) -> loop(s(x), s(0'), 0') loop(x, s(y), z) -> if(le(x, s(y)), x, s(y), z) if(true, x, y, z) -> z if(false, x, y, z) -> loop(x, double(y), s(z)) Types: le :: s:0':logError -> s:0':logError -> false:true s :: s:0':logError -> s:0':logError 0' :: s:0':logError false :: false:true true :: false:true double :: s:0':logError -> s:0':logError log :: s:0':logError -> s:0':logError logError :: s:0':logError loop :: s:0':logError -> s:0':logError -> s:0':logError -> s:0':logError if :: false:true -> s:0':logError -> s:0':logError -> s:0':logError -> s:0':logError hole_false:true1_0 :: false:true hole_s:0':logError2_0 :: s:0':logError gen_s:0':logError3_0 :: Nat -> s:0':logError Generator Equations: gen_s:0':logError3_0(0) <=> 0' gen_s:0':logError3_0(+(x, 1)) <=> s(gen_s:0':logError3_0(x)) The following defined symbols remain to be analysed: le, double, loop They will be analysed ascendingly in the following order: le < loop double < loop ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: le(gen_s:0':logError3_0(+(1, n5_0)), gen_s:0':logError3_0(n5_0)) -> false, rt in Omega(1 + n5_0) Induction Base: le(gen_s:0':logError3_0(+(1, 0)), gen_s:0':logError3_0(0)) ->_R^Omega(1) false Induction Step: le(gen_s:0':logError3_0(+(1, +(n5_0, 1))), gen_s:0':logError3_0(+(n5_0, 1))) ->_R^Omega(1) le(gen_s:0':logError3_0(+(1, n5_0)), gen_s:0':logError3_0(n5_0)) ->_IH false We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: le(s(x), 0') -> false le(0', y) -> true le(s(x), s(y)) -> le(x, y) double(0') -> 0' double(s(x)) -> s(s(double(x))) log(0') -> logError log(s(x)) -> loop(s(x), s(0'), 0') loop(x, s(y), z) -> if(le(x, s(y)), x, s(y), z) if(true, x, y, z) -> z if(false, x, y, z) -> loop(x, double(y), s(z)) Types: le :: s:0':logError -> s:0':logError -> false:true s :: s:0':logError -> s:0':logError 0' :: s:0':logError false :: false:true true :: false:true double :: s:0':logError -> s:0':logError log :: s:0':logError -> s:0':logError logError :: s:0':logError loop :: s:0':logError -> s:0':logError -> s:0':logError -> s:0':logError if :: false:true -> s:0':logError -> s:0':logError -> s:0':logError -> s:0':logError hole_false:true1_0 :: false:true hole_s:0':logError2_0 :: s:0':logError gen_s:0':logError3_0 :: Nat -> s:0':logError Generator Equations: gen_s:0':logError3_0(0) <=> 0' gen_s:0':logError3_0(+(x, 1)) <=> s(gen_s:0':logError3_0(x)) The following defined symbols remain to be analysed: le, double, loop They will be analysed ascendingly in the following order: le < loop double < loop ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Innermost TRS: Rules: le(s(x), 0') -> false le(0', y) -> true le(s(x), s(y)) -> le(x, y) double(0') -> 0' double(s(x)) -> s(s(double(x))) log(0') -> logError log(s(x)) -> loop(s(x), s(0'), 0') loop(x, s(y), z) -> if(le(x, s(y)), x, s(y), z) if(true, x, y, z) -> z if(false, x, y, z) -> loop(x, double(y), s(z)) Types: le :: s:0':logError -> s:0':logError -> false:true s :: s:0':logError -> s:0':logError 0' :: s:0':logError false :: false:true true :: false:true double :: s:0':logError -> s:0':logError log :: s:0':logError -> s:0':logError logError :: s:0':logError loop :: s:0':logError -> s:0':logError -> s:0':logError -> s:0':logError if :: false:true -> s:0':logError -> s:0':logError -> s:0':logError -> s:0':logError hole_false:true1_0 :: false:true hole_s:0':logError2_0 :: s:0':logError gen_s:0':logError3_0 :: Nat -> s:0':logError Lemmas: le(gen_s:0':logError3_0(+(1, n5_0)), gen_s:0':logError3_0(n5_0)) -> false, rt in Omega(1 + n5_0) Generator Equations: gen_s:0':logError3_0(0) <=> 0' gen_s:0':logError3_0(+(x, 1)) <=> s(gen_s:0':logError3_0(x)) The following defined symbols remain to be analysed: double, loop They will be analysed ascendingly in the following order: double < loop ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: double(gen_s:0':logError3_0(n294_0)) -> gen_s:0':logError3_0(*(2, n294_0)), rt in Omega(1 + n294_0) Induction Base: double(gen_s:0':logError3_0(0)) ->_R^Omega(1) 0' Induction Step: double(gen_s:0':logError3_0(+(n294_0, 1))) ->_R^Omega(1) s(s(double(gen_s:0':logError3_0(n294_0)))) ->_IH s(s(gen_s:0':logError3_0(*(2, c295_0)))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: Innermost TRS: Rules: le(s(x), 0') -> false le(0', y) -> true le(s(x), s(y)) -> le(x, y) double(0') -> 0' double(s(x)) -> s(s(double(x))) log(0') -> logError log(s(x)) -> loop(s(x), s(0'), 0') loop(x, s(y), z) -> if(le(x, s(y)), x, s(y), z) if(true, x, y, z) -> z if(false, x, y, z) -> loop(x, double(y), s(z)) Types: le :: s:0':logError -> s:0':logError -> false:true s :: s:0':logError -> s:0':logError 0' :: s:0':logError false :: false:true true :: false:true double :: s:0':logError -> s:0':logError log :: s:0':logError -> s:0':logError logError :: s:0':logError loop :: s:0':logError -> s:0':logError -> s:0':logError -> s:0':logError if :: false:true -> s:0':logError -> s:0':logError -> s:0':logError -> s:0':logError hole_false:true1_0 :: false:true hole_s:0':logError2_0 :: s:0':logError gen_s:0':logError3_0 :: Nat -> s:0':logError Lemmas: le(gen_s:0':logError3_0(+(1, n5_0)), gen_s:0':logError3_0(n5_0)) -> false, rt in Omega(1 + n5_0) double(gen_s:0':logError3_0(n294_0)) -> gen_s:0':logError3_0(*(2, n294_0)), rt in Omega(1 + n294_0) Generator Equations: gen_s:0':logError3_0(0) <=> 0' gen_s:0':logError3_0(+(x, 1)) <=> s(gen_s:0':logError3_0(x)) The following defined symbols remain to be analysed: loop