/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 269 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 88 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 46 ms] (16) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: check(0) -> zero check(s(0)) -> odd check(s(s(0))) -> even check(s(s(s(x)))) -> check(s(x)) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> timesIter(x, y, 0) timesIter(x, y, z) -> if(check(x), x, y, z, plus(z, y)) p(s(x)) -> x p(0) -> 0 if(zero, x, y, z, u) -> z if(odd, x, y, z, u) -> timesIter(p(x), y, u) if(even, x, y, z, u) -> plus(timesIter(half(x), y, half(z)), timesIter(half(x), y, half(s(z)))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: check(0') -> zero check(s(0')) -> odd check(s(s(0'))) -> even check(s(s(s(x)))) -> check(s(x)) half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> timesIter(x, y, 0') timesIter(x, y, z) -> if(check(x), x, y, z, plus(z, y)) p(s(x)) -> x p(0') -> 0' if(zero, x, y, z, u) -> z if(odd, x, y, z, u) -> timesIter(p(x), y, u) if(even, x, y, z, u) -> plus(timesIter(half(x), y, half(z)), timesIter(half(x), y, half(s(z)))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Innermost TRS: Rules: check(0') -> zero check(s(0')) -> odd check(s(s(0'))) -> even check(s(s(s(x)))) -> check(s(x)) half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> timesIter(x, y, 0') timesIter(x, y, z) -> if(check(x), x, y, z, plus(z, y)) p(s(x)) -> x p(0') -> 0' if(zero, x, y, z, u) -> z if(odd, x, y, z, u) -> timesIter(p(x), y, u) if(even, x, y, z, u) -> plus(timesIter(half(x), y, half(z)), timesIter(half(x), y, half(s(z)))) Types: check :: 0':s -> zero:odd:even 0' :: 0':s zero :: zero:odd:even s :: 0':s -> 0':s odd :: zero:odd:even even :: zero:odd:even half :: 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s times :: 0':s -> 0':s -> 0':s timesIter :: 0':s -> 0':s -> 0':s -> 0':s if :: zero:odd:even -> 0':s -> 0':s -> 0':s -> 0':s -> 0':s p :: 0':s -> 0':s hole_zero:odd:even1_0 :: zero:odd:even hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: check, half, plus, timesIter They will be analysed ascendingly in the following order: check < timesIter half < timesIter plus < timesIter ---------------------------------------- (6) Obligation: Innermost TRS: Rules: check(0') -> zero check(s(0')) -> odd check(s(s(0'))) -> even check(s(s(s(x)))) -> check(s(x)) half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> timesIter(x, y, 0') timesIter(x, y, z) -> if(check(x), x, y, z, plus(z, y)) p(s(x)) -> x p(0') -> 0' if(zero, x, y, z, u) -> z if(odd, x, y, z, u) -> timesIter(p(x), y, u) if(even, x, y, z, u) -> plus(timesIter(half(x), y, half(z)), timesIter(half(x), y, half(s(z)))) Types: check :: 0':s -> zero:odd:even 0' :: 0':s zero :: zero:odd:even s :: 0':s -> 0':s odd :: zero:odd:even even :: zero:odd:even half :: 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s times :: 0':s -> 0':s -> 0':s timesIter :: 0':s -> 0':s -> 0':s -> 0':s if :: zero:odd:even -> 0':s -> 0':s -> 0':s -> 0':s -> 0':s p :: 0':s -> 0':s hole_zero:odd:even1_0 :: zero:odd:even hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: check, half, plus, timesIter They will be analysed ascendingly in the following order: check < timesIter half < timesIter plus < timesIter ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: check(gen_0':s3_0(+(1, *(2, n5_0)))) -> odd, rt in Omega(1 + n5_0) Induction Base: check(gen_0':s3_0(+(1, *(2, 0)))) ->_R^Omega(1) odd Induction Step: check(gen_0':s3_0(+(1, *(2, +(n5_0, 1))))) ->_R^Omega(1) check(s(gen_0':s3_0(*(2, n5_0)))) ->_IH odd We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: check(0') -> zero check(s(0')) -> odd check(s(s(0'))) -> even check(s(s(s(x)))) -> check(s(x)) half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> timesIter(x, y, 0') timesIter(x, y, z) -> if(check(x), x, y, z, plus(z, y)) p(s(x)) -> x p(0') -> 0' if(zero, x, y, z, u) -> z if(odd, x, y, z, u) -> timesIter(p(x), y, u) if(even, x, y, z, u) -> plus(timesIter(half(x), y, half(z)), timesIter(half(x), y, half(s(z)))) Types: check :: 0':s -> zero:odd:even 0' :: 0':s zero :: zero:odd:even s :: 0':s -> 0':s odd :: zero:odd:even even :: zero:odd:even half :: 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s times :: 0':s -> 0':s -> 0':s timesIter :: 0':s -> 0':s -> 0':s -> 0':s if :: zero:odd:even -> 0':s -> 0':s -> 0':s -> 0':s -> 0':s p :: 0':s -> 0':s hole_zero:odd:even1_0 :: zero:odd:even hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: check, half, plus, timesIter They will be analysed ascendingly in the following order: check < timesIter half < timesIter plus < timesIter ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Innermost TRS: Rules: check(0') -> zero check(s(0')) -> odd check(s(s(0'))) -> even check(s(s(s(x)))) -> check(s(x)) half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> timesIter(x, y, 0') timesIter(x, y, z) -> if(check(x), x, y, z, plus(z, y)) p(s(x)) -> x p(0') -> 0' if(zero, x, y, z, u) -> z if(odd, x, y, z, u) -> timesIter(p(x), y, u) if(even, x, y, z, u) -> plus(timesIter(half(x), y, half(z)), timesIter(half(x), y, half(s(z)))) Types: check :: 0':s -> zero:odd:even 0' :: 0':s zero :: zero:odd:even s :: 0':s -> 0':s odd :: zero:odd:even even :: zero:odd:even half :: 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s times :: 0':s -> 0':s -> 0':s timesIter :: 0':s -> 0':s -> 0':s -> 0':s if :: zero:odd:even -> 0':s -> 0':s -> 0':s -> 0':s -> 0':s p :: 0':s -> 0':s hole_zero:odd:even1_0 :: zero:odd:even hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Lemmas: check(gen_0':s3_0(+(1, *(2, n5_0)))) -> odd, rt in Omega(1 + n5_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: half, plus, timesIter They will be analysed ascendingly in the following order: half < timesIter plus < timesIter ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: half(gen_0':s3_0(*(2, n285_0))) -> gen_0':s3_0(n285_0), rt in Omega(1 + n285_0) Induction Base: half(gen_0':s3_0(*(2, 0))) ->_R^Omega(1) 0' Induction Step: half(gen_0':s3_0(*(2, +(n285_0, 1)))) ->_R^Omega(1) s(half(gen_0':s3_0(*(2, n285_0)))) ->_IH s(gen_0':s3_0(c286_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: Innermost TRS: Rules: check(0') -> zero check(s(0')) -> odd check(s(s(0'))) -> even check(s(s(s(x)))) -> check(s(x)) half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> timesIter(x, y, 0') timesIter(x, y, z) -> if(check(x), x, y, z, plus(z, y)) p(s(x)) -> x p(0') -> 0' if(zero, x, y, z, u) -> z if(odd, x, y, z, u) -> timesIter(p(x), y, u) if(even, x, y, z, u) -> plus(timesIter(half(x), y, half(z)), timesIter(half(x), y, half(s(z)))) Types: check :: 0':s -> zero:odd:even 0' :: 0':s zero :: zero:odd:even s :: 0':s -> 0':s odd :: zero:odd:even even :: zero:odd:even half :: 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s times :: 0':s -> 0':s -> 0':s timesIter :: 0':s -> 0':s -> 0':s -> 0':s if :: zero:odd:even -> 0':s -> 0':s -> 0':s -> 0':s -> 0':s p :: 0':s -> 0':s hole_zero:odd:even1_0 :: zero:odd:even hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Lemmas: check(gen_0':s3_0(+(1, *(2, n5_0)))) -> odd, rt in Omega(1 + n5_0) half(gen_0':s3_0(*(2, n285_0))) -> gen_0':s3_0(n285_0), rt in Omega(1 + n285_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: plus, timesIter They will be analysed ascendingly in the following order: plus < timesIter ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_0':s3_0(n655_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n655_0, b)), rt in Omega(1 + n655_0) Induction Base: plus(gen_0':s3_0(0), gen_0':s3_0(b)) ->_R^Omega(1) gen_0':s3_0(b) Induction Step: plus(gen_0':s3_0(+(n655_0, 1)), gen_0':s3_0(b)) ->_R^Omega(1) s(plus(gen_0':s3_0(n655_0), gen_0':s3_0(b))) ->_IH s(gen_0':s3_0(+(b, c656_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: Innermost TRS: Rules: check(0') -> zero check(s(0')) -> odd check(s(s(0'))) -> even check(s(s(s(x)))) -> check(s(x)) half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) plus(0', y) -> y plus(s(x), y) -> s(plus(x, y)) times(x, y) -> timesIter(x, y, 0') timesIter(x, y, z) -> if(check(x), x, y, z, plus(z, y)) p(s(x)) -> x p(0') -> 0' if(zero, x, y, z, u) -> z if(odd, x, y, z, u) -> timesIter(p(x), y, u) if(even, x, y, z, u) -> plus(timesIter(half(x), y, half(z)), timesIter(half(x), y, half(s(z)))) Types: check :: 0':s -> zero:odd:even 0' :: 0':s zero :: zero:odd:even s :: 0':s -> 0':s odd :: zero:odd:even even :: zero:odd:even half :: 0':s -> 0':s plus :: 0':s -> 0':s -> 0':s times :: 0':s -> 0':s -> 0':s timesIter :: 0':s -> 0':s -> 0':s -> 0':s if :: zero:odd:even -> 0':s -> 0':s -> 0':s -> 0':s -> 0':s p :: 0':s -> 0':s hole_zero:odd:even1_0 :: zero:odd:even hole_0':s2_0 :: 0':s gen_0':s3_0 :: Nat -> 0':s Lemmas: check(gen_0':s3_0(+(1, *(2, n5_0)))) -> odd, rt in Omega(1 + n5_0) half(gen_0':s3_0(*(2, n285_0))) -> gen_0':s3_0(n285_0), rt in Omega(1 + n285_0) plus(gen_0':s3_0(n655_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n655_0, b)), rt in Omega(1 + n655_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: timesIter