/export/starexec/sandbox/solver/bin/starexec_run_tct_rci /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?,O(1)) * Step 1: Sum. WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: f(k(a()),k(b()),X) -> f(X,X,X) g(X) -> u(h(X),h(X),X) h(d()) -> c(a()) h(d()) -> c(b()) u(d(),c(Y),X) -> k(Y) - Signature: {f/3,g/1,h/1,u/3} / {a/0,b/0,c/1,d/0,k/1} - Obligation: innermost runtime complexity wrt. defined symbols {f,g,h,u} and constructors {a,b,c,d,k} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: Sum. MAYBE + Considered Problem: - Strict TRS: f(k(a()),k(b()),X) -> f(X,X,X) g(X) -> u(h(X),h(X),X) h(d()) -> c(a()) h(d()) -> c(b()) u(d(),c(Y),X) -> k(Y) - Signature: {f/3,g/1,h/1,u/3} / {a/0,b/0,c/1,d/0,k/1} - Obligation: innermost runtime complexity wrt. defined symbols {f,g,h,u} and constructors {a,b,c,d,k} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:2: Ara. MAYBE + Considered Problem: - Strict TRS: f(k(a()),k(b()),X) -> f(X,X,X) g(X) -> u(h(X),h(X),X) h(d()) -> c(a()) h(d()) -> c(b()) u(d(),c(Y),X) -> k(Y) - Signature: {f/3,g/1,h/1,u/3} / {a/0,b/0,c/1,d/0,k/1} - Obligation: innermost runtime complexity wrt. defined symbols {f,g,h,u} and constructors {a,b,c,d,k} + Applied Processor: Ara {minDegree = 1, maxDegree = 3, araTimeout = 15, araRuleShifting = Just 1, isBestCase = True, mkCompletelyDefined = False, verboseOutput = False} + Details: Signatures used: ---------------- F (TrsFun "a") :: [] -(0)-> "A"(0, 0, 0) F (TrsFun "b") :: [] -(0)-> "A"(0, 0, 0) F (TrsFun "c") :: ["A"(0, 0, 0)] -(0)-> "A"(0, 0, 0) F (TrsFun "d") :: [] -(0)-> "A"(0, 0, 0) F (TrsFun "d") :: [] -(0)-> "A"(1, 1, 1) F (TrsFun "f") :: ["A"(0, 0, 0) x "A"(0, 0, 0) x "A"(0, 0, 0)] -(1)-> "A"(0, 0, 0) F (TrsFun "g") :: ["A"(0, 0, 0)] -(1)-> "A"(0, 0, 0) F (TrsFun "h") :: ["A"(0, 0, 0)] -(1)-> "A"(0, 0, 0) F (TrsFun "k") :: ["A"(0, 0, 0)] -(0)-> "A"(0, 0, 0) F (TrsFun "main") :: ["A"(1, 1, 1) x "A"(0, 0, 0) x "A"(0, 0, 0)] -(1)-> "A"(0, 0, 0) F (TrsFun "u") :: ["A"(1, 1, 1) x "A"(0, 0, 0) x "A"(0, 0, 0)] -(1)-> "A"(0, 0, 0) Cost-free Signatures used: -------------------------- Base Constructor Signatures used: --------------------------------- Following Still Strict Rules were Typed as: ------------------------------------------- 1. Strict: f(k(a()),k(b()),X) -> f(X,X,X) g(X) -> u(h(X),h(X),X) h(d()) -> c(a()) h(d()) -> c(b()) u(d(),c(Y),X) -> k(Y) main(x1,x2,x3) -> u(x1,x2,x3) 2. Weak: ** Step 1.b:1: DependencyPairs. WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: f(k(a()),k(b()),X) -> f(X,X,X) g(X) -> u(h(X),h(X),X) h(d()) -> c(a()) h(d()) -> c(b()) u(d(),c(Y),X) -> k(Y) - Signature: {f/3,g/1,h/1,u/3} / {a/0,b/0,c/1,d/0,k/1} - Obligation: innermost runtime complexity wrt. defined symbols {f,g,h,u} and constructors {a,b,c,d,k} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs f#(k(a()),k(b()),X) -> c_1(f#(X,X,X)) g#(X) -> c_2(u#(h(X),h(X),X),h#(X),h#(X)) h#(d()) -> c_3() h#(d()) -> c_4() u#(d(),c(Y),X) -> c_5() Weak DPs and mark the set of starting terms. ** Step 1.b:2: PredecessorEstimation. WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(k(a()),k(b()),X) -> c_1(f#(X,X,X)) g#(X) -> c_2(u#(h(X),h(X),X),h#(X),h#(X)) h#(d()) -> c_3() h#(d()) -> c_4() u#(d(),c(Y),X) -> c_5() - Weak TRS: f(k(a()),k(b()),X) -> f(X,X,X) g(X) -> u(h(X),h(X),X) h(d()) -> c(a()) h(d()) -> c(b()) u(d(),c(Y),X) -> k(Y) - Signature: {f/3,g/1,h/1,u/3,f#/3,g#/1,h#/1,u#/3} / {a/0,b/0,c/1,d/0,k/1,c_1/1,c_2/3,c_3/0,c_4/0,c_5/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#,h#,u#} and constructors {a,b,c,d,k} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,3,4,5} by application of Pre({1,3,4,5}) = {2}. Here rules are labelled as follows: 1: f#(k(a()),k(b()),X) -> c_1(f#(X,X,X)) 2: g#(X) -> c_2(u#(h(X),h(X),X),h#(X),h#(X)) 3: h#(d()) -> c_3() 4: h#(d()) -> c_4() 5: u#(d(),c(Y),X) -> c_5() ** Step 1.b:3: PredecessorEstimation. WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: g#(X) -> c_2(u#(h(X),h(X),X),h#(X),h#(X)) - Weak DPs: f#(k(a()),k(b()),X) -> c_1(f#(X,X,X)) h#(d()) -> c_3() h#(d()) -> c_4() u#(d(),c(Y),X) -> c_5() - Weak TRS: f(k(a()),k(b()),X) -> f(X,X,X) g(X) -> u(h(X),h(X),X) h(d()) -> c(a()) h(d()) -> c(b()) u(d(),c(Y),X) -> k(Y) - Signature: {f/3,g/1,h/1,u/3,f#/3,g#/1,h#/1,u#/3} / {a/0,b/0,c/1,d/0,k/1,c_1/1,c_2/3,c_3/0,c_4/0,c_5/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#,h#,u#} and constructors {a,b,c,d,k} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1} by application of Pre({1}) = {}. Here rules are labelled as follows: 1: g#(X) -> c_2(u#(h(X),h(X),X),h#(X),h#(X)) 2: f#(k(a()),k(b()),X) -> c_1(f#(X,X,X)) 3: h#(d()) -> c_3() 4: h#(d()) -> c_4() 5: u#(d(),c(Y),X) -> c_5() ** Step 1.b:4: RemoveWeakSuffixes. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: f#(k(a()),k(b()),X) -> c_1(f#(X,X,X)) g#(X) -> c_2(u#(h(X),h(X),X),h#(X),h#(X)) h#(d()) -> c_3() h#(d()) -> c_4() u#(d(),c(Y),X) -> c_5() - Weak TRS: f(k(a()),k(b()),X) -> f(X,X,X) g(X) -> u(h(X),h(X),X) h(d()) -> c(a()) h(d()) -> c(b()) u(d(),c(Y),X) -> k(Y) - Signature: {f/3,g/1,h/1,u/3,f#/3,g#/1,h#/1,u#/3} / {a/0,b/0,c/1,d/0,k/1,c_1/1,c_2/3,c_3/0,c_4/0,c_5/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#,h#,u#} and constructors {a,b,c,d,k} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:f#(k(a()),k(b()),X) -> c_1(f#(X,X,X)) 2:W:g#(X) -> c_2(u#(h(X),h(X),X),h#(X),h#(X)) -->_1 u#(d(),c(Y),X) -> c_5():5 -->_3 h#(d()) -> c_4():4 -->_2 h#(d()) -> c_4():4 -->_3 h#(d()) -> c_3():3 -->_2 h#(d()) -> c_3():3 3:W:h#(d()) -> c_3() 4:W:h#(d()) -> c_4() 5:W:u#(d(),c(Y),X) -> c_5() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: g#(X) -> c_2(u#(h(X),h(X),X),h#(X),h#(X)) 3: h#(d()) -> c_3() 4: h#(d()) -> c_4() 5: u#(d(),c(Y),X) -> c_5() 1: f#(k(a()),k(b()),X) -> c_1(f#(X,X,X)) ** Step 1.b:5: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: f(k(a()),k(b()),X) -> f(X,X,X) g(X) -> u(h(X),h(X),X) h(d()) -> c(a()) h(d()) -> c(b()) u(d(),c(Y),X) -> k(Y) - Signature: {f/3,g/1,h/1,u/3,f#/3,g#/1,h#/1,u#/3} / {a/0,b/0,c/1,d/0,k/1,c_1/1,c_2/3,c_3/0,c_4/0,c_5/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#,h#,u#} and constructors {a,b,c,d,k} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(1))