/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 2 ms] (8) CpxRNTS (9) CompleteCoflocoProof [FINISHED, 512 ms] (10) BOUNDS(1, n^1) (11) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTRS (13) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (14) typed CpxTrs (15) OrderProof [LOWER BOUND(ID), 0 ms] (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 298 ms] (18) BEST (19) proven lower bound (20) LowerBoundPropagationProof [FINISHED, 0 ms] (21) BOUNDS(n^1, INF) (22) typed CpxTrs (23) RewriteLemmaProof [LOWER BOUND(ID), 45 ms] (24) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: ge(x, 0) -> true ge(0, s(x)) -> false ge(s(x), s(y)) -> ge(x, y) minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) div(x, y) -> ify(ge(y, s(0)), x, y) ify(false, x, y) -> divByZeroError ify(true, x, y) -> if(ge(x, y), x, y) if(false, x, y) -> 0 if(true, x, y) -> s(div(minus(x, y), y)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: ge(x, 0) -> true [1] ge(0, s(x)) -> false [1] ge(s(x), s(y)) -> ge(x, y) [1] minus(x, 0) -> x [1] minus(s(x), s(y)) -> minus(x, y) [1] div(x, y) -> ify(ge(y, s(0)), x, y) [1] ify(false, x, y) -> divByZeroError [1] ify(true, x, y) -> if(ge(x, y), x, y) [1] if(false, x, y) -> 0 [1] if(true, x, y) -> s(div(minus(x, y), y)) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: ge(x, 0) -> true [1] ge(0, s(x)) -> false [1] ge(s(x), s(y)) -> ge(x, y) [1] minus(x, 0) -> x [1] minus(s(x), s(y)) -> minus(x, y) [1] div(x, y) -> ify(ge(y, s(0)), x, y) [1] ify(false, x, y) -> divByZeroError [1] ify(true, x, y) -> if(ge(x, y), x, y) [1] if(false, x, y) -> 0 [1] if(true, x, y) -> s(div(minus(x, y), y)) [1] The TRS has the following type information: ge :: 0:s:divByZeroError -> 0:s:divByZeroError -> true:false 0 :: 0:s:divByZeroError true :: true:false s :: 0:s:divByZeroError -> 0:s:divByZeroError false :: true:false minus :: 0:s:divByZeroError -> 0:s:divByZeroError -> 0:s:divByZeroError div :: 0:s:divByZeroError -> 0:s:divByZeroError -> 0:s:divByZeroError ify :: true:false -> 0:s:divByZeroError -> 0:s:divByZeroError -> 0:s:divByZeroError divByZeroError :: 0:s:divByZeroError if :: true:false -> 0:s:divByZeroError -> 0:s:divByZeroError -> 0:s:divByZeroError Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: ge(v0, v1) -> null_ge [0] minus(v0, v1) -> null_minus [0] ify(v0, v1, v2) -> null_ify [0] if(v0, v1, v2) -> null_if [0] And the following fresh constants: null_ge, null_minus, null_ify, null_if ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: ge(x, 0) -> true [1] ge(0, s(x)) -> false [1] ge(s(x), s(y)) -> ge(x, y) [1] minus(x, 0) -> x [1] minus(s(x), s(y)) -> minus(x, y) [1] div(x, y) -> ify(ge(y, s(0)), x, y) [1] ify(false, x, y) -> divByZeroError [1] ify(true, x, y) -> if(ge(x, y), x, y) [1] if(false, x, y) -> 0 [1] if(true, x, y) -> s(div(minus(x, y), y)) [1] ge(v0, v1) -> null_ge [0] minus(v0, v1) -> null_minus [0] ify(v0, v1, v2) -> null_ify [0] if(v0, v1, v2) -> null_if [0] The TRS has the following type information: ge :: 0:s:divByZeroError:null_minus:null_ify:null_if -> 0:s:divByZeroError:null_minus:null_ify:null_if -> true:false:null_ge 0 :: 0:s:divByZeroError:null_minus:null_ify:null_if true :: true:false:null_ge s :: 0:s:divByZeroError:null_minus:null_ify:null_if -> 0:s:divByZeroError:null_minus:null_ify:null_if false :: true:false:null_ge minus :: 0:s:divByZeroError:null_minus:null_ify:null_if -> 0:s:divByZeroError:null_minus:null_ify:null_if -> 0:s:divByZeroError:null_minus:null_ify:null_if div :: 0:s:divByZeroError:null_minus:null_ify:null_if -> 0:s:divByZeroError:null_minus:null_ify:null_if -> 0:s:divByZeroError:null_minus:null_ify:null_if ify :: true:false:null_ge -> 0:s:divByZeroError:null_minus:null_ify:null_if -> 0:s:divByZeroError:null_minus:null_ify:null_if -> 0:s:divByZeroError:null_minus:null_ify:null_if divByZeroError :: 0:s:divByZeroError:null_minus:null_ify:null_if if :: true:false:null_ge -> 0:s:divByZeroError:null_minus:null_ify:null_if -> 0:s:divByZeroError:null_minus:null_ify:null_if -> 0:s:divByZeroError:null_minus:null_ify:null_if null_ge :: true:false:null_ge null_minus :: 0:s:divByZeroError:null_minus:null_ify:null_if null_ify :: 0:s:divByZeroError:null_minus:null_ify:null_if null_if :: 0:s:divByZeroError:null_minus:null_ify:null_if Rewrite Strategy: INNERMOST ---------------------------------------- (7) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 true => 2 false => 1 divByZeroError => 1 null_ge => 0 null_minus => 0 null_ify => 0 null_if => 0 ---------------------------------------- (8) Obligation: Complexity RNTS consisting of the following rules: div(z, z') -{ 1 }-> ify(ge(y, 1 + 0), x, y) :|: x >= 0, y >= 0, z = x, z' = y ge(z, z') -{ 1 }-> ge(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x ge(z, z') -{ 1 }-> 2 :|: x >= 0, z = x, z' = 0 ge(z, z') -{ 1 }-> 1 :|: z' = 1 + x, x >= 0, z = 0 ge(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 if(z, z', z'') -{ 1 }-> 0 :|: z' = x, z'' = y, z = 1, x >= 0, y >= 0 if(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 if(z, z', z'') -{ 1 }-> 1 + div(minus(x, y), y) :|: z = 2, z' = x, z'' = y, x >= 0, y >= 0 ify(z, z', z'') -{ 1 }-> if(ge(x, y), x, y) :|: z = 2, z' = x, z'' = y, x >= 0, y >= 0 ify(z, z', z'') -{ 1 }-> 1 :|: z' = x, z'' = y, z = 1, x >= 0, y >= 0 ify(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 minus(z, z') -{ 1 }-> x :|: x >= 0, z = x, z' = 0 minus(z, z') -{ 1 }-> minus(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x minus(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (9) CompleteCoflocoProof (FINISHED) Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: eq(start(V1, V, V12),0,[ge(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V, V12),0,[minus(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V, V12),0,[div(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V, V12),0,[ify(V1, V, V12, Out)],[V1 >= 0,V >= 0,V12 >= 0]). eq(start(V1, V, V12),0,[if(V1, V, V12, Out)],[V1 >= 0,V >= 0,V12 >= 0]). eq(ge(V1, V, Out),1,[],[Out = 2,V2 >= 0,V1 = V2,V = 0]). eq(ge(V1, V, Out),1,[],[Out = 1,V = 1 + V3,V3 >= 0,V1 = 0]). eq(ge(V1, V, Out),1,[ge(V4, V5, Ret)],[Out = Ret,V = 1 + V5,V4 >= 0,V5 >= 0,V1 = 1 + V4]). eq(minus(V1, V, Out),1,[],[Out = V6,V6 >= 0,V1 = V6,V = 0]). eq(minus(V1, V, Out),1,[minus(V7, V8, Ret1)],[Out = Ret1,V = 1 + V8,V7 >= 0,V8 >= 0,V1 = 1 + V7]). eq(div(V1, V, Out),1,[ge(V9, 1 + 0, Ret0),ify(Ret0, V10, V9, Ret2)],[Out = Ret2,V10 >= 0,V9 >= 0,V1 = V10,V = V9]). eq(ify(V1, V, V12, Out),1,[],[Out = 1,V = V13,V12 = V11,V1 = 1,V13 >= 0,V11 >= 0]). eq(ify(V1, V, V12, Out),1,[ge(V15, V14, Ret01),if(Ret01, V15, V14, Ret3)],[Out = Ret3,V1 = 2,V = V15,V12 = V14,V15 >= 0,V14 >= 0]). eq(if(V1, V, V12, Out),1,[],[Out = 0,V = V17,V12 = V16,V1 = 1,V17 >= 0,V16 >= 0]). eq(if(V1, V, V12, Out),1,[minus(V19, V18, Ret10),div(Ret10, V18, Ret11)],[Out = 1 + Ret11,V1 = 2,V = V19,V12 = V18,V19 >= 0,V18 >= 0]). eq(ge(V1, V, Out),0,[],[Out = 0,V21 >= 0,V20 >= 0,V1 = V21,V = V20]). eq(minus(V1, V, Out),0,[],[Out = 0,V23 >= 0,V22 >= 0,V1 = V23,V = V22]). eq(ify(V1, V, V12, Out),0,[],[Out = 0,V25 >= 0,V12 = V26,V24 >= 0,V1 = V25,V = V24,V26 >= 0]). eq(if(V1, V, V12, Out),0,[],[Out = 0,V27 >= 0,V12 = V28,V29 >= 0,V1 = V27,V = V29,V28 >= 0]). input_output_vars(ge(V1,V,Out),[V1,V],[Out]). input_output_vars(minus(V1,V,Out),[V1,V],[Out]). input_output_vars(div(V1,V,Out),[V1,V],[Out]). input_output_vars(ify(V1,V,V12,Out),[V1,V,V12],[Out]). input_output_vars(if(V1,V,V12,Out),[V1,V,V12],[Out]). CoFloCo proof output: Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. recursive : [ge/3] 1. recursive : [minus/3] 2. recursive : [(div)/3,if/4,ify/4] 3. non_recursive : [start/3] #### Obtained direct recursion through partial evaluation 0. SCC is partially evaluated into ge/3 1. SCC is partially evaluated into minus/3 2. SCC is partially evaluated into (div)/3 3. SCC is partially evaluated into start/3 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations ge/3 * CE 13 is refined into CE [22] * CE 10 is refined into CE [23] * CE 11 is refined into CE [24] * CE 12 is refined into CE [25] ### Cost equations --> "Loop" of ge/3 * CEs [25] --> Loop 13 * CEs [22] --> Loop 14 * CEs [23] --> Loop 15 * CEs [24] --> Loop 16 ### Ranking functions of CR ge(V1,V,Out) * RF of phase [13]: [V,V1] #### Partial ranking functions of CR ge(V1,V,Out) * Partial RF of phase [13]: - RF of loop [13:1]: V V1 ### Specialization of cost equations minus/3 * CE 16 is refined into CE [26] * CE 14 is refined into CE [27] * CE 15 is refined into CE [28] ### Cost equations --> "Loop" of minus/3 * CEs [28] --> Loop 17 * CEs [26] --> Loop 18 * CEs [27] --> Loop 19 ### Ranking functions of CR minus(V1,V,Out) * RF of phase [17]: [V,V1] #### Partial ranking functions of CR minus(V1,V,Out) * Partial RF of phase [17]: - RF of loop [17:1]: V V1 ### Specialization of cost equations (div)/3 * CE 18 is refined into CE [29] * CE 17 is refined into CE [30,31,32] * CE 19 is refined into CE [33,34] * CE 21 is refined into CE [35,36,37,38] * CE 20 is refined into CE [39,40] ### Cost equations --> "Loop" of (div)/3 * CEs [40] --> Loop 20 * CEs [39] --> Loop 21 * CEs [29] --> Loop 22 * CEs [30] --> Loop 23 * CEs [31,32,33,34,35,36,37,38] --> Loop 24 ### Ranking functions of CR div(V1,V,Out) * RF of phase [20]: [V1,V1-V+1] #### Partial ranking functions of CR div(V1,V,Out) * Partial RF of phase [20]: - RF of loop [20:1]: V1 V1-V+1 ### Specialization of cost equations start/3 * CE 3 is refined into CE [41,42] * CE 4 is refined into CE [43,44,45,46,47,48,49] * CE 5 is refined into CE [50,51,52,53,54] * CE 6 is refined into CE [55,56,57,58,59,60] * CE 1 is refined into CE [61] * CE 2 is refined into CE [62] * CE 7 is refined into CE [63,64,65,66,67] * CE 8 is refined into CE [68,69,70] * CE 9 is refined into CE [71,72,73] ### Cost equations --> "Loop" of start/3 * CEs [64,68,72] --> Loop 25 * CEs [43,44,45,46,51,55,56,58] --> Loop 26 * CEs [41,42,47,48,49,50,52,53,54,57,59,60] --> Loop 27 * CEs [62] --> Loop 28 * CEs [61,63,65,66,67,69,70,71,73] --> Loop 29 ### Ranking functions of CR start(V1,V,V12) #### Partial ranking functions of CR start(V1,V,V12) Computing Bounds ===================================== #### Cost of chains of ge(V1,V,Out): * Chain [[13],16]: 1*it(13)+1 Such that:it(13) =< V1 with precondition: [Out=1,V1>=1,V>=V1+1] * Chain [[13],15]: 1*it(13)+1 Such that:it(13) =< V with precondition: [Out=2,V>=1,V1>=V] * Chain [[13],14]: 1*it(13)+0 Such that:it(13) =< V with precondition: [Out=0,V1>=1,V>=1] * Chain [16]: 1 with precondition: [V1=0,Out=1,V>=1] * Chain [15]: 1 with precondition: [V=0,Out=2,V1>=0] * Chain [14]: 0 with precondition: [Out=0,V1>=0,V>=0] #### Cost of chains of minus(V1,V,Out): * Chain [[17],19]: 1*it(17)+1 Such that:it(17) =< V with precondition: [V1=Out+V,V>=1,V1>=V] * Chain [[17],18]: 1*it(17)+0 Such that:it(17) =< V with precondition: [Out=0,V1>=1,V>=1] * Chain [19]: 1 with precondition: [V=0,V1=Out,V1>=0] * Chain [18]: 0 with precondition: [Out=0,V1>=0,V>=0] #### Cost of chains of div(V1,V,Out): * Chain [[20],24]: 6*it(20)+8*s(3)+4*s(7)+2*s(10)+1*s(21)+5 Such that:aux(1) =< 1 aux(7) =< V1-V+1 aux(3) =< V aux(10) =< V1 s(3) =< aux(1) s(7) =< aux(10) s(10) =< aux(3) aux(5) =< aux(10) it(20) =< aux(10) aux(5) =< aux(7) it(20) =< aux(7) s(21) =< aux(5) with precondition: [V>=1,Out>=1,V1+1>=Out+V] * Chain [[20],21,24]: 6*it(20)+9*s(3)+4*s(10)+1*s(21)+2*s(22)+10 Such that:aux(12) =< 1 aux(6) =< V1 aux(7) =< V1-V+1 aux(13) =< V aux(14) =< V1-V s(3) =< aux(12) s(10) =< aux(13) aux(5) =< aux(6) it(20) =< aux(6) s(23) =< aux(6) aux(5) =< aux(7) it(20) =< aux(7) aux(5) =< aux(14) it(20) =< aux(14) s(23) =< aux(14) s(21) =< aux(5) s(22) =< s(23) with precondition: [V>=1,Out>=2,V1+2>=2*V+Out] * Chain [24]: 8*s(3)+2*s(7)+2*s(10)+5 Such that:aux(1) =< 1 aux(2) =< V1 aux(3) =< V s(3) =< aux(1) s(7) =< aux(2) s(10) =< aux(3) with precondition: [Out=0,V1>=0,V>=0] * Chain [23]: 2 with precondition: [V=0,Out=0,V1>=0] * Chain [22]: 3 with precondition: [V=0,Out=1,V1>=0] * Chain [21,24]: 9*s(3)+4*s(10)+10 Such that:aux(12) =< 1 aux(13) =< V s(3) =< aux(12) s(10) =< aux(13) with precondition: [Out=1,V>=1,V1>=V] #### Cost of chains of start(V1,V,V12): * Chain [29]: 16*s(59)+7*s(60)+34*s(67)+6*s(78)+1*s(80)+2*s(81)+6*s(84)+1*s(85)+10 Such that:s(70) =< V1-V s(73) =< V1-V+1 aux(19) =< 1 aux(20) =< V1 aux(21) =< V s(60) =< aux(20) s(59) =< aux(21) s(67) =< aux(19) s(77) =< aux(20) s(78) =< aux(20) s(79) =< aux(20) s(77) =< s(73) s(78) =< s(73) s(77) =< s(70) s(78) =< s(70) s(79) =< s(70) s(80) =< s(77) s(81) =< s(79) s(83) =< aux(20) s(84) =< aux(20) s(83) =< s(73) s(84) =< s(73) s(85) =< s(83) with precondition: [V1>=0,V>=0] * Chain [28]: 1 with precondition: [V1=1,V>=0,V12>=0] * Chain [27]: 2*s(86)+39*s(87)+84*s(92)+12*s(101)+12*s(113)+2*s(115)+4*s(116)+12*s(119)+2*s(120)+14 Such that:aux(28) =< 1 aux(29) =< V aux(30) =< V-2*V12 aux(31) =< V-2*V12+1 aux(32) =< V-V12 aux(33) =< V12 s(86) =< aux(29) s(87) =< aux(33) s(92) =< aux(28) s(101) =< aux(32) s(112) =< aux(32) s(113) =< aux(32) s(114) =< aux(32) s(112) =< aux(31) s(113) =< aux(31) s(112) =< aux(30) s(113) =< aux(30) s(114) =< aux(30) s(115) =< s(112) s(116) =< s(114) s(118) =< aux(32) s(119) =< aux(32) s(118) =< aux(31) s(119) =< aux(31) s(120) =< s(118) with precondition: [V1=2,V>=0,V12>=0] * Chain [26]: 24*s(158)+4*s(159)+9 Such that:aux(35) =< 1 aux(36) =< V s(158) =< aux(35) s(159) =< aux(36) with precondition: [V1=2,V12=0,V>=0] * Chain [25]: 3 with precondition: [V=0,V1>=0] Closed-form bounds of start(V1,V,V12): ------------------------------------- * Chain [29] with precondition: [V1>=0,V>=0] - Upper bound: 23*V1+16*V+44 - Complexity: n * Chain [28] with precondition: [V1=1,V>=0,V12>=0] - Upper bound: 1 - Complexity: constant * Chain [27] with precondition: [V1=2,V>=0,V12>=0] - Upper bound: 2*V+39*V12+98+nat(V-V12)*44 - Complexity: n * Chain [26] with precondition: [V1=2,V12=0,V>=0] - Upper bound: 4*V+33 - Complexity: n * Chain [25] with precondition: [V=0,V1>=0] - Upper bound: 3 - Complexity: constant ### Maximum cost of start(V1,V,V12): 2*V+30+max([23*V1+14*V+11,nat(V12)*39+65+nat(V-V12)*44])+3 Asymptotic class: n * Total analysis performed in 424 ms. ---------------------------------------- (10) BOUNDS(1, n^1) ---------------------------------------- (11) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (12) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: ge(x, 0') -> true ge(0', s(x)) -> false ge(s(x), s(y)) -> ge(x, y) minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) div(x, y) -> ify(ge(y, s(0')), x, y) ify(false, x, y) -> divByZeroError ify(true, x, y) -> if(ge(x, y), x, y) if(false, x, y) -> 0' if(true, x, y) -> s(div(minus(x, y), y)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (13) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (14) Obligation: Innermost TRS: Rules: ge(x, 0') -> true ge(0', s(x)) -> false ge(s(x), s(y)) -> ge(x, y) minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) div(x, y) -> ify(ge(y, s(0')), x, y) ify(false, x, y) -> divByZeroError ify(true, x, y) -> if(ge(x, y), x, y) if(false, x, y) -> 0' if(true, x, y) -> s(div(minus(x, y), y)) Types: ge :: 0':s:divByZeroError -> 0':s:divByZeroError -> true:false 0' :: 0':s:divByZeroError true :: true:false s :: 0':s:divByZeroError -> 0':s:divByZeroError false :: true:false minus :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError div :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError ify :: true:false -> 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError divByZeroError :: 0':s:divByZeroError if :: true:false -> 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError hole_true:false1_0 :: true:false hole_0':s:divByZeroError2_0 :: 0':s:divByZeroError gen_0':s:divByZeroError3_0 :: Nat -> 0':s:divByZeroError ---------------------------------------- (15) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: ge, minus, div They will be analysed ascendingly in the following order: ge < div minus < div ---------------------------------------- (16) Obligation: Innermost TRS: Rules: ge(x, 0') -> true ge(0', s(x)) -> false ge(s(x), s(y)) -> ge(x, y) minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) div(x, y) -> ify(ge(y, s(0')), x, y) ify(false, x, y) -> divByZeroError ify(true, x, y) -> if(ge(x, y), x, y) if(false, x, y) -> 0' if(true, x, y) -> s(div(minus(x, y), y)) Types: ge :: 0':s:divByZeroError -> 0':s:divByZeroError -> true:false 0' :: 0':s:divByZeroError true :: true:false s :: 0':s:divByZeroError -> 0':s:divByZeroError false :: true:false minus :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError div :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError ify :: true:false -> 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError divByZeroError :: 0':s:divByZeroError if :: true:false -> 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError hole_true:false1_0 :: true:false hole_0':s:divByZeroError2_0 :: 0':s:divByZeroError gen_0':s:divByZeroError3_0 :: Nat -> 0':s:divByZeroError Generator Equations: gen_0':s:divByZeroError3_0(0) <=> 0' gen_0':s:divByZeroError3_0(+(x, 1)) <=> s(gen_0':s:divByZeroError3_0(x)) The following defined symbols remain to be analysed: ge, minus, div They will be analysed ascendingly in the following order: ge < div minus < div ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ge(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(n5_0)) -> true, rt in Omega(1 + n5_0) Induction Base: ge(gen_0':s:divByZeroError3_0(0), gen_0':s:divByZeroError3_0(0)) ->_R^Omega(1) true Induction Step: ge(gen_0':s:divByZeroError3_0(+(n5_0, 1)), gen_0':s:divByZeroError3_0(+(n5_0, 1))) ->_R^Omega(1) ge(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(n5_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (18) Complex Obligation (BEST) ---------------------------------------- (19) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: ge(x, 0') -> true ge(0', s(x)) -> false ge(s(x), s(y)) -> ge(x, y) minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) div(x, y) -> ify(ge(y, s(0')), x, y) ify(false, x, y) -> divByZeroError ify(true, x, y) -> if(ge(x, y), x, y) if(false, x, y) -> 0' if(true, x, y) -> s(div(minus(x, y), y)) Types: ge :: 0':s:divByZeroError -> 0':s:divByZeroError -> true:false 0' :: 0':s:divByZeroError true :: true:false s :: 0':s:divByZeroError -> 0':s:divByZeroError false :: true:false minus :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError div :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError ify :: true:false -> 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError divByZeroError :: 0':s:divByZeroError if :: true:false -> 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError hole_true:false1_0 :: true:false hole_0':s:divByZeroError2_0 :: 0':s:divByZeroError gen_0':s:divByZeroError3_0 :: Nat -> 0':s:divByZeroError Generator Equations: gen_0':s:divByZeroError3_0(0) <=> 0' gen_0':s:divByZeroError3_0(+(x, 1)) <=> s(gen_0':s:divByZeroError3_0(x)) The following defined symbols remain to be analysed: ge, minus, div They will be analysed ascendingly in the following order: ge < div minus < div ---------------------------------------- (20) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (21) BOUNDS(n^1, INF) ---------------------------------------- (22) Obligation: Innermost TRS: Rules: ge(x, 0') -> true ge(0', s(x)) -> false ge(s(x), s(y)) -> ge(x, y) minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) div(x, y) -> ify(ge(y, s(0')), x, y) ify(false, x, y) -> divByZeroError ify(true, x, y) -> if(ge(x, y), x, y) if(false, x, y) -> 0' if(true, x, y) -> s(div(minus(x, y), y)) Types: ge :: 0':s:divByZeroError -> 0':s:divByZeroError -> true:false 0' :: 0':s:divByZeroError true :: true:false s :: 0':s:divByZeroError -> 0':s:divByZeroError false :: true:false minus :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError div :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError ify :: true:false -> 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError divByZeroError :: 0':s:divByZeroError if :: true:false -> 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError hole_true:false1_0 :: true:false hole_0':s:divByZeroError2_0 :: 0':s:divByZeroError gen_0':s:divByZeroError3_0 :: Nat -> 0':s:divByZeroError Lemmas: ge(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(n5_0)) -> true, rt in Omega(1 + n5_0) Generator Equations: gen_0':s:divByZeroError3_0(0) <=> 0' gen_0':s:divByZeroError3_0(+(x, 1)) <=> s(gen_0':s:divByZeroError3_0(x)) The following defined symbols remain to be analysed: minus, div They will be analysed ascendingly in the following order: minus < div ---------------------------------------- (23) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: minus(gen_0':s:divByZeroError3_0(n293_0), gen_0':s:divByZeroError3_0(n293_0)) -> gen_0':s:divByZeroError3_0(0), rt in Omega(1 + n293_0) Induction Base: minus(gen_0':s:divByZeroError3_0(0), gen_0':s:divByZeroError3_0(0)) ->_R^Omega(1) gen_0':s:divByZeroError3_0(0) Induction Step: minus(gen_0':s:divByZeroError3_0(+(n293_0, 1)), gen_0':s:divByZeroError3_0(+(n293_0, 1))) ->_R^Omega(1) minus(gen_0':s:divByZeroError3_0(n293_0), gen_0':s:divByZeroError3_0(n293_0)) ->_IH gen_0':s:divByZeroError3_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (24) Obligation: Innermost TRS: Rules: ge(x, 0') -> true ge(0', s(x)) -> false ge(s(x), s(y)) -> ge(x, y) minus(x, 0') -> x minus(s(x), s(y)) -> minus(x, y) div(x, y) -> ify(ge(y, s(0')), x, y) ify(false, x, y) -> divByZeroError ify(true, x, y) -> if(ge(x, y), x, y) if(false, x, y) -> 0' if(true, x, y) -> s(div(minus(x, y), y)) Types: ge :: 0':s:divByZeroError -> 0':s:divByZeroError -> true:false 0' :: 0':s:divByZeroError true :: true:false s :: 0':s:divByZeroError -> 0':s:divByZeroError false :: true:false minus :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError div :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError ify :: true:false -> 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError divByZeroError :: 0':s:divByZeroError if :: true:false -> 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError hole_true:false1_0 :: true:false hole_0':s:divByZeroError2_0 :: 0':s:divByZeroError gen_0':s:divByZeroError3_0 :: Nat -> 0':s:divByZeroError Lemmas: ge(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(n5_0)) -> true, rt in Omega(1 + n5_0) minus(gen_0':s:divByZeroError3_0(n293_0), gen_0':s:divByZeroError3_0(n293_0)) -> gen_0':s:divByZeroError3_0(0), rt in Omega(1 + n293_0) Generator Equations: gen_0':s:divByZeroError3_0(0) <=> 0' gen_0':s:divByZeroError3_0(+(x, 1)) <=> s(gen_0':s:divByZeroError3_0(x)) The following defined symbols remain to be analysed: div