/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^2, INF). (0) CpxRelTRS (1) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 145 ms] (2) CpxRelTRS (3) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxRelTRS (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) typed CpxTrs (7) OrderProof [LOWER BOUND(ID), 0 ms] (8) typed CpxTrs (9) RewriteLemmaProof [LOWER BOUND(ID), 293 ms] (10) BEST (11) proven lower bound (12) LowerBoundPropagationProof [FINISHED, 0 ms] (13) BOUNDS(n^1, INF) (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 23 ms] (16) BEST (17) proven lower bound (18) LowerBoundPropagationProof [FINISHED, 0 ms] (19) BOUNDS(n^2, INF) (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 24 ms] (22) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: power(x', S(x)) -> mult(x', power(x', x)) mult(x', S(x)) -> add0(x', mult(x', x)) add0(x', S(x)) -> +(S(0), add0(x', x)) power(x, 0) -> S(0) mult(x, 0) -> 0 add0(x, 0) -> x The (relative) TRS S consists of the following rules: +(x, S(0)) -> S(x) +(S(0), y) -> S(y) Rewrite Strategy: INNERMOST ---------------------------------------- (1) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: power(x', S(x)) -> mult(x', power(x', x)) mult(x', S(x)) -> add0(x', mult(x', x)) add0(x', S(x)) -> +(S(0), add0(x', x)) power(x, 0) -> S(0) mult(x, 0) -> 0 add0(x, 0) -> x The (relative) TRS S consists of the following rules: +(x, S(0)) -> S(x) +(S(0), y) -> S(y) Rewrite Strategy: INNERMOST ---------------------------------------- (3) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: power(x', S(x)) -> mult(x', power(x', x)) mult(x', S(x)) -> add0(x', mult(x', x)) add0(x', S(x)) -> +'(S(0'), add0(x', x)) power(x, 0') -> S(0') mult(x, 0') -> 0' add0(x, 0') -> x The (relative) TRS S consists of the following rules: +'(x, S(0')) -> S(x) +'(S(0'), y) -> S(y) Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Innermost TRS: Rules: power(x', S(x)) -> mult(x', power(x', x)) mult(x', S(x)) -> add0(x', mult(x', x)) add0(x', S(x)) -> +'(S(0'), add0(x', x)) power(x, 0') -> S(0') mult(x, 0') -> 0' add0(x, 0') -> x +'(x, S(0')) -> S(x) +'(S(0'), y) -> S(y) Types: power :: S:0' -> S:0' -> S:0' S :: S:0' -> S:0' mult :: S:0' -> S:0' -> S:0' add0 :: S:0' -> S:0' -> S:0' +' :: S:0' -> S:0' -> S:0' 0' :: S:0' hole_S:0'1_1 :: S:0' gen_S:0'2_1 :: Nat -> S:0' ---------------------------------------- (7) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: power, mult, add0 They will be analysed ascendingly in the following order: mult < power add0 < mult ---------------------------------------- (8) Obligation: Innermost TRS: Rules: power(x', S(x)) -> mult(x', power(x', x)) mult(x', S(x)) -> add0(x', mult(x', x)) add0(x', S(x)) -> +'(S(0'), add0(x', x)) power(x, 0') -> S(0') mult(x, 0') -> 0' add0(x, 0') -> x +'(x, S(0')) -> S(x) +'(S(0'), y) -> S(y) Types: power :: S:0' -> S:0' -> S:0' S :: S:0' -> S:0' mult :: S:0' -> S:0' -> S:0' add0 :: S:0' -> S:0' -> S:0' +' :: S:0' -> S:0' -> S:0' 0' :: S:0' hole_S:0'1_1 :: S:0' gen_S:0'2_1 :: Nat -> S:0' Generator Equations: gen_S:0'2_1(0) <=> 0' gen_S:0'2_1(+(x, 1)) <=> S(gen_S:0'2_1(x)) The following defined symbols remain to be analysed: add0, power, mult They will be analysed ascendingly in the following order: mult < power add0 < mult ---------------------------------------- (9) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: add0(gen_S:0'2_1(1), gen_S:0'2_1(n4_1)) -> gen_S:0'2_1(+(1, n4_1)), rt in Omega(1 + n4_1) Induction Base: add0(gen_S:0'2_1(1), gen_S:0'2_1(0)) ->_R^Omega(1) gen_S:0'2_1(1) Induction Step: add0(gen_S:0'2_1(1), gen_S:0'2_1(+(n4_1, 1))) ->_R^Omega(1) +'(S(0'), add0(gen_S:0'2_1(1), gen_S:0'2_1(n4_1))) ->_IH +'(S(0'), gen_S:0'2_1(+(1, c5_1))) ->_R^Omega(0) S(gen_S:0'2_1(+(1, n4_1))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (10) Complex Obligation (BEST) ---------------------------------------- (11) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: power(x', S(x)) -> mult(x', power(x', x)) mult(x', S(x)) -> add0(x', mult(x', x)) add0(x', S(x)) -> +'(S(0'), add0(x', x)) power(x, 0') -> S(0') mult(x, 0') -> 0' add0(x, 0') -> x +'(x, S(0')) -> S(x) +'(S(0'), y) -> S(y) Types: power :: S:0' -> S:0' -> S:0' S :: S:0' -> S:0' mult :: S:0' -> S:0' -> S:0' add0 :: S:0' -> S:0' -> S:0' +' :: S:0' -> S:0' -> S:0' 0' :: S:0' hole_S:0'1_1 :: S:0' gen_S:0'2_1 :: Nat -> S:0' Generator Equations: gen_S:0'2_1(0) <=> 0' gen_S:0'2_1(+(x, 1)) <=> S(gen_S:0'2_1(x)) The following defined symbols remain to be analysed: add0, power, mult They will be analysed ascendingly in the following order: mult < power add0 < mult ---------------------------------------- (12) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (13) BOUNDS(n^1, INF) ---------------------------------------- (14) Obligation: Innermost TRS: Rules: power(x', S(x)) -> mult(x', power(x', x)) mult(x', S(x)) -> add0(x', mult(x', x)) add0(x', S(x)) -> +'(S(0'), add0(x', x)) power(x, 0') -> S(0') mult(x, 0') -> 0' add0(x, 0') -> x +'(x, S(0')) -> S(x) +'(S(0'), y) -> S(y) Types: power :: S:0' -> S:0' -> S:0' S :: S:0' -> S:0' mult :: S:0' -> S:0' -> S:0' add0 :: S:0' -> S:0' -> S:0' +' :: S:0' -> S:0' -> S:0' 0' :: S:0' hole_S:0'1_1 :: S:0' gen_S:0'2_1 :: Nat -> S:0' Lemmas: add0(gen_S:0'2_1(1), gen_S:0'2_1(n4_1)) -> gen_S:0'2_1(+(1, n4_1)), rt in Omega(1 + n4_1) Generator Equations: gen_S:0'2_1(0) <=> 0' gen_S:0'2_1(+(x, 1)) <=> S(gen_S:0'2_1(x)) The following defined symbols remain to be analysed: mult, power They will be analysed ascendingly in the following order: mult < power ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: mult(gen_S:0'2_1(1), gen_S:0'2_1(n487_1)) -> gen_S:0'2_1(n487_1), rt in Omega(1 + n487_1 + n487_1^2) Induction Base: mult(gen_S:0'2_1(1), gen_S:0'2_1(0)) ->_R^Omega(1) 0' Induction Step: mult(gen_S:0'2_1(1), gen_S:0'2_1(+(n487_1, 1))) ->_R^Omega(1) add0(gen_S:0'2_1(1), mult(gen_S:0'2_1(1), gen_S:0'2_1(n487_1))) ->_IH add0(gen_S:0'2_1(1), gen_S:0'2_1(c488_1)) ->_L^Omega(1 + n487_1) gen_S:0'2_1(+(1, n487_1)) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (16) Complex Obligation (BEST) ---------------------------------------- (17) Obligation: Proved the lower bound n^2 for the following obligation: Innermost TRS: Rules: power(x', S(x)) -> mult(x', power(x', x)) mult(x', S(x)) -> add0(x', mult(x', x)) add0(x', S(x)) -> +'(S(0'), add0(x', x)) power(x, 0') -> S(0') mult(x, 0') -> 0' add0(x, 0') -> x +'(x, S(0')) -> S(x) +'(S(0'), y) -> S(y) Types: power :: S:0' -> S:0' -> S:0' S :: S:0' -> S:0' mult :: S:0' -> S:0' -> S:0' add0 :: S:0' -> S:0' -> S:0' +' :: S:0' -> S:0' -> S:0' 0' :: S:0' hole_S:0'1_1 :: S:0' gen_S:0'2_1 :: Nat -> S:0' Lemmas: add0(gen_S:0'2_1(1), gen_S:0'2_1(n4_1)) -> gen_S:0'2_1(+(1, n4_1)), rt in Omega(1 + n4_1) Generator Equations: gen_S:0'2_1(0) <=> 0' gen_S:0'2_1(+(x, 1)) <=> S(gen_S:0'2_1(x)) The following defined symbols remain to be analysed: mult, power They will be analysed ascendingly in the following order: mult < power ---------------------------------------- (18) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (19) BOUNDS(n^2, INF) ---------------------------------------- (20) Obligation: Innermost TRS: Rules: power(x', S(x)) -> mult(x', power(x', x)) mult(x', S(x)) -> add0(x', mult(x', x)) add0(x', S(x)) -> +'(S(0'), add0(x', x)) power(x, 0') -> S(0') mult(x, 0') -> 0' add0(x, 0') -> x +'(x, S(0')) -> S(x) +'(S(0'), y) -> S(y) Types: power :: S:0' -> S:0' -> S:0' S :: S:0' -> S:0' mult :: S:0' -> S:0' -> S:0' add0 :: S:0' -> S:0' -> S:0' +' :: S:0' -> S:0' -> S:0' 0' :: S:0' hole_S:0'1_1 :: S:0' gen_S:0'2_1 :: Nat -> S:0' Lemmas: add0(gen_S:0'2_1(1), gen_S:0'2_1(n4_1)) -> gen_S:0'2_1(+(1, n4_1)), rt in Omega(1 + n4_1) mult(gen_S:0'2_1(1), gen_S:0'2_1(n487_1)) -> gen_S:0'2_1(n487_1), rt in Omega(1 + n487_1 + n487_1^2) Generator Equations: gen_S:0'2_1(0) <=> 0' gen_S:0'2_1(+(x, 1)) <=> S(gen_S:0'2_1(x)) The following defined symbols remain to be analysed: power ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: power(gen_S:0'2_1(1), gen_S:0'2_1(n780_1)) -> gen_S:0'2_1(1), rt in Omega(1 + n780_1) Induction Base: power(gen_S:0'2_1(1), gen_S:0'2_1(0)) ->_R^Omega(1) S(0') Induction Step: power(gen_S:0'2_1(1), gen_S:0'2_1(+(n780_1, 1))) ->_R^Omega(1) mult(gen_S:0'2_1(1), power(gen_S:0'2_1(1), gen_S:0'2_1(n780_1))) ->_IH mult(gen_S:0'2_1(1), gen_S:0'2_1(1)) ->_L^Omega(3) gen_S:0'2_1(1) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) BOUNDS(1, INF)