/export/starexec/sandbox2/solver/bin/starexec_run_tct_rci /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?,O(n^1)) * Step 1: Sum. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: f(0(),x2) -> 0() f(S(x),x2) -> f(x2,x) - Signature: {f/2} / {0/0,S/1} - Obligation: innermost runtime complexity wrt. defined symbols {f} and constructors {0,S} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DependencyPairs. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: f(0(),x2) -> 0() f(S(x),x2) -> f(x2,x) - Signature: {f/2} / {0/0,S/1} - Obligation: innermost runtime complexity wrt. defined symbols {f} and constructors {0,S} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs f#(0(),x2) -> c_1() f#(S(x),x2) -> c_2(f#(x2,x)) Weak DPs and mark the set of starting terms. * Step 3: PredecessorEstimation. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(0(),x2) -> c_1() f#(S(x),x2) -> c_2(f#(x2,x)) - Weak TRS: f(0(),x2) -> 0() f(S(x),x2) -> f(x2,x) - Signature: {f/2,f#/2} / {0/0,S/1,c_1/0,c_2/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#} and constructors {0,S} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1} by application of Pre({1}) = {2}. Here rules are labelled as follows: 1: f#(0(),x2) -> c_1() 2: f#(S(x),x2) -> c_2(f#(x2,x)) * Step 4: RemoveWeakSuffixes. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(S(x),x2) -> c_2(f#(x2,x)) - Weak DPs: f#(0(),x2) -> c_1() - Weak TRS: f(0(),x2) -> 0() f(S(x),x2) -> f(x2,x) - Signature: {f/2,f#/2} / {0/0,S/1,c_1/0,c_2/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#} and constructors {0,S} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:f#(S(x),x2) -> c_2(f#(x2,x)) -->_1 f#(0(),x2) -> c_1():2 -->_1 f#(S(x),x2) -> c_2(f#(x2,x)):1 2:W:f#(0(),x2) -> c_1() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: f#(0(),x2) -> c_1() * Step 5: UsableRules. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(S(x),x2) -> c_2(f#(x2,x)) - Weak TRS: f(0(),x2) -> 0() f(S(x),x2) -> f(x2,x) - Signature: {f/2,f#/2} / {0/0,S/1,c_1/0,c_2/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#} and constructors {0,S} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: f#(S(x),x2) -> c_2(f#(x2,x)) * Step 6: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(S(x),x2) -> c_2(f#(x2,x)) - Signature: {f/2,f#/2} / {0/0,S/1,c_1/0,c_2/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#} and constructors {0,S} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1} Following symbols are considered usable: {f#} TcT has computed the following interpretation: p(0) = [1] p(S) = [1] x1 + [12] p(f) = [4] x1 + [1] p(f#) = [1] x1 + [1] x2 + [4] p(c_1) = [1] p(c_2) = [1] x1 + [5] Following rules are strictly oriented: f#(S(x),x2) = [1] x + [1] x2 + [16] > [1] x + [1] x2 + [9] = c_2(f#(x2,x)) Following rules are (at-least) weakly oriented: * Step 7: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: f#(S(x),x2) -> c_2(f#(x2,x)) - Signature: {f/2,f#/2} / {0/0,S/1,c_1/0,c_2/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#} and constructors {0,S} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))