/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection (9) DecreasingLoopProof [FINISHED, 25 ms] (10) BOUNDS(EXP, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: f(S(x'), S(x)) -> h(g(x', S(x)), f(S(S(S(x'))), x)) g(S(x), S(x')) -> h(f(S(x), S(x')), g(x, S(S(S(x'))))) h(0, S(x)) -> h(0, x) h(0, 0) -> 0 g(S(x), 0) -> 0 f(S(x), 0) -> 0 h(S(x), x2) -> h(x, x2) g(0, x2) -> 0 f(0, x2) -> 0 S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: f(S(x'), S(x)) -> h(g(x', S(x)), f(S(S(S(x'))), x)) g(S(x), S(x')) -> h(f(S(x), S(x')), g(x, S(S(S(x'))))) h(0, S(x)) -> h(0, x) h(0, 0) -> 0 g(S(x), 0) -> 0 f(S(x), 0) -> 0 h(S(x), x2) -> h(x, x2) g(0, x2) -> 0 f(0, x2) -> 0 S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence f(S(x'), S(x)) ->^+ h(g(x', S(x)), f(S(S(S(x'))), x)) gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. The pumping substitution is [x / S(x)]. The result substitution is [x' / S(S(x'))]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: f(S(x'), S(x)) -> h(g(x', S(x)), f(S(S(S(x'))), x)) g(S(x), S(x')) -> h(f(S(x), S(x')), g(x, S(S(S(x'))))) h(0, S(x)) -> h(0, x) h(0, 0) -> 0 g(S(x), 0) -> 0 f(S(x), 0) -> 0 h(S(x), x2) -> h(x, x2) g(0, x2) -> 0 f(0, x2) -> 0 S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: f(S(x'), S(x)) -> h(g(x', S(x)), f(S(S(S(x'))), x)) g(S(x), S(x')) -> h(f(S(x), S(x')), g(x, S(S(S(x'))))) h(0, S(x)) -> h(0, x) h(0, 0) -> 0 g(S(x), 0) -> 0 f(S(x), 0) -> 0 h(S(x), x2) -> h(x, x2) g(0, x2) -> 0 f(0, x2) -> 0 S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (9) DecreasingLoopProof (FINISHED) The following loop(s) give(s) rise to the lower bound EXP: The rewrite sequence g(S(x), S(x')) ->^+ h(h(g(x, S(x')), f(S(S(S(x))), x')), g(x, S(S(S(x'))))) gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0]. The pumping substitution is [x / S(x)]. The result substitution is [ ]. The rewrite sequence g(S(x), S(x')) ->^+ h(h(g(x, S(x')), f(S(S(S(x))), x')), g(x, S(S(S(x'))))) gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. The pumping substitution is [x / S(x)]. The result substitution is [x' / S(S(x'))]. ---------------------------------------- (10) BOUNDS(EXP, INF)