/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) CpxTrsMatchBoundsTAProof [FINISHED, 0 ms] (4) BOUNDS(1, n^1) (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 333 ms] (12) proven lower bound (13) LowerBoundPropagationProof [FINISHED, 0 ms] (14) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: eq0(S(x'), S(x)) -> eq0(x', x) eq0(S(x), 0) -> 0 eq0(0, S(x)) -> 0 eq0(0, 0) -> S(0) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: eq0(S(x'), S(x)) -> eq0(x', x) eq0(S(x), 0) -> 0 eq0(0, S(x)) -> 0 eq0(0, 0) -> S(0) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1] transitions: S0(0) -> 0 00() -> 0 eq00(0, 0) -> 1 eq01(0, 0) -> 1 01() -> 1 01() -> 2 S1(2) -> 1 ---------------------------------------- (4) BOUNDS(1, n^1) ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: eq0(S(x'), S(x)) -> eq0(x', x) eq0(S(x), 0') -> 0' eq0(0', S(x)) -> 0' eq0(0', 0') -> S(0') S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: eq0(S(x'), S(x)) -> eq0(x', x) eq0(S(x), 0') -> 0' eq0(0', S(x)) -> 0' eq0(0', 0') -> S(0') Types: eq0 :: S:0' -> S:0' -> S:0' S :: S:0' -> S:0' 0' :: S:0' hole_S:0'1_1 :: S:0' gen_S:0'2_1 :: Nat -> S:0' ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: eq0 ---------------------------------------- (10) Obligation: Innermost TRS: Rules: eq0(S(x'), S(x)) -> eq0(x', x) eq0(S(x), 0') -> 0' eq0(0', S(x)) -> 0' eq0(0', 0') -> S(0') Types: eq0 :: S:0' -> S:0' -> S:0' S :: S:0' -> S:0' 0' :: S:0' hole_S:0'1_1 :: S:0' gen_S:0'2_1 :: Nat -> S:0' Generator Equations: gen_S:0'2_1(0) <=> 0' gen_S:0'2_1(+(x, 1)) <=> S(gen_S:0'2_1(x)) The following defined symbols remain to be analysed: eq0 ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: eq0(gen_S:0'2_1(+(1, n4_1)), gen_S:0'2_1(n4_1)) -> gen_S:0'2_1(0), rt in Omega(1 + n4_1) Induction Base: eq0(gen_S:0'2_1(+(1, 0)), gen_S:0'2_1(0)) ->_R^Omega(1) 0' Induction Step: eq0(gen_S:0'2_1(+(1, +(n4_1, 1))), gen_S:0'2_1(+(n4_1, 1))) ->_R^Omega(1) eq0(gen_S:0'2_1(+(1, n4_1)), gen_S:0'2_1(n4_1)) ->_IH gen_S:0'2_1(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: eq0(S(x'), S(x)) -> eq0(x', x) eq0(S(x), 0') -> 0' eq0(0', S(x)) -> 0' eq0(0', 0') -> S(0') Types: eq0 :: S:0' -> S:0' -> S:0' S :: S:0' -> S:0' 0' :: S:0' hole_S:0'1_1 :: S:0' gen_S:0'2_1 :: Nat -> S:0' Generator Equations: gen_S:0'2_1(0) <=> 0' gen_S:0'2_1(+(x, 1)) <=> S(gen_S:0'2_1(x)) The following defined symbols remain to be analysed: eq0 ---------------------------------------- (13) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (14) BOUNDS(n^1, INF)