/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). (0) CpxRelTRS (1) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 212 ms] (2) CpxRelTRS (3) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxRelTRS (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) typed CpxTrs (7) OrderProof [LOWER BOUND(ID), 8 ms] (8) typed CpxTrs (9) RewriteLemmaProof [LOWER BOUND(ID), 281 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 69 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 193 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) minsort(Nil) -> Nil appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False remove(x', Cons(x, xs)) -> remove[Ite](!EQ(x', x), x', Cons(x, xs)) The (relative) TRS S consists of the following rules: !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0, S(y)) -> False !EQ(S(x), 0) -> False !EQ(0, 0) -> True <(S(x), S(y)) -> <(x, y) <(0, S(y)) -> True <(x, 0) -> False remove[Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') remove[Ite](True, x', Cons(x, xs)) -> xs appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') Rewrite Strategy: INNERMOST ---------------------------------------- (1) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) minsort(Nil) -> Nil appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False remove(x', Cons(x, xs)) -> remove[Ite](!EQ(x', x), x', Cons(x, xs)) The (relative) TRS S consists of the following rules: !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0, S(y)) -> False !EQ(S(x), 0) -> False !EQ(0, 0) -> True <(S(x), S(y)) -> <(x, y) <(0, S(y)) -> True <(x, 0) -> False remove[Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') remove[Ite](True, x', Cons(x, xs)) -> xs appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') Rewrite Strategy: INNERMOST ---------------------------------------- (3) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) minsort(Nil) -> Nil appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False remove(x', Cons(x, xs)) -> remove[Ite](!EQ(x', x), x', Cons(x, xs)) The (relative) TRS S consists of the following rules: !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0', S(y)) -> False !EQ(S(x), 0') -> False !EQ(0', 0') -> True <(S(x), S(y)) -> <(x, y) <(0', S(y)) -> True <(x, 0') -> False remove[Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') remove[Ite](True, x', Cons(x, xs)) -> xs appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Innermost TRS: Rules: minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) minsort(Nil) -> Nil appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False remove(x', Cons(x, xs)) -> remove[Ite](!EQ(x', x), x', Cons(x, xs)) !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0', S(y)) -> False !EQ(S(x), 0') -> False !EQ(0', 0') -> True <(S(x), S(y)) -> <(x, y) <(0', S(y)) -> True <(x, 0') -> False remove[Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') remove[Ite](True, x', Cons(x, xs)) -> xs appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') Types: minsort :: Cons:Nil -> Cons:Nil Cons :: S:0' -> Cons:Nil -> Cons:Nil appmin :: S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil Nil :: Cons:Nil appmin[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil < :: S:0' -> S:0' -> True:False remove :: S:0' -> Cons:Nil -> Cons:Nil notEmpty :: Cons:Nil -> True:False True :: True:False False :: True:False remove[Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil !EQ :: S:0' -> S:0' -> True:False S :: S:0' -> S:0' 0' :: S:0' hole_Cons:Nil1_0 :: Cons:Nil hole_S:0'2_0 :: S:0' hole_True:False3_0 :: True:False gen_Cons:Nil4_0 :: Nat -> Cons:Nil gen_S:0'5_0 :: Nat -> S:0' ---------------------------------------- (7) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: minsort, appmin, <, remove, !EQ They will be analysed ascendingly in the following order: minsort = appmin < < appmin remove < appmin !EQ < remove ---------------------------------------- (8) Obligation: Innermost TRS: Rules: minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) minsort(Nil) -> Nil appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False remove(x', Cons(x, xs)) -> remove[Ite](!EQ(x', x), x', Cons(x, xs)) !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0', S(y)) -> False !EQ(S(x), 0') -> False !EQ(0', 0') -> True <(S(x), S(y)) -> <(x, y) <(0', S(y)) -> True <(x, 0') -> False remove[Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') remove[Ite](True, x', Cons(x, xs)) -> xs appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') Types: minsort :: Cons:Nil -> Cons:Nil Cons :: S:0' -> Cons:Nil -> Cons:Nil appmin :: S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil Nil :: Cons:Nil appmin[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil < :: S:0' -> S:0' -> True:False remove :: S:0' -> Cons:Nil -> Cons:Nil notEmpty :: Cons:Nil -> True:False True :: True:False False :: True:False remove[Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil !EQ :: S:0' -> S:0' -> True:False S :: S:0' -> S:0' 0' :: S:0' hole_Cons:Nil1_0 :: Cons:Nil hole_S:0'2_0 :: S:0' hole_True:False3_0 :: True:False gen_Cons:Nil4_0 :: Nat -> Cons:Nil gen_S:0'5_0 :: Nat -> S:0' Generator Equations: gen_Cons:Nil4_0(0) <=> Nil gen_Cons:Nil4_0(+(x, 1)) <=> Cons(0', gen_Cons:Nil4_0(x)) gen_S:0'5_0(0) <=> 0' gen_S:0'5_0(+(x, 1)) <=> S(gen_S:0'5_0(x)) The following defined symbols remain to be analysed: <, minsort, appmin, remove, !EQ They will be analysed ascendingly in the following order: minsort = appmin < < appmin remove < appmin !EQ < remove ---------------------------------------- (9) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: <(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) -> True, rt in Omega(0) Induction Base: <(gen_S:0'5_0(0), gen_S:0'5_0(+(1, 0))) ->_R^Omega(0) True Induction Step: <(gen_S:0'5_0(+(n7_0, 1)), gen_S:0'5_0(+(1, +(n7_0, 1)))) ->_R^Omega(0) <(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) ->_IH True We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (10) Obligation: Innermost TRS: Rules: minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) minsort(Nil) -> Nil appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False remove(x', Cons(x, xs)) -> remove[Ite](!EQ(x', x), x', Cons(x, xs)) !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0', S(y)) -> False !EQ(S(x), 0') -> False !EQ(0', 0') -> True <(S(x), S(y)) -> <(x, y) <(0', S(y)) -> True <(x, 0') -> False remove[Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') remove[Ite](True, x', Cons(x, xs)) -> xs appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') Types: minsort :: Cons:Nil -> Cons:Nil Cons :: S:0' -> Cons:Nil -> Cons:Nil appmin :: S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil Nil :: Cons:Nil appmin[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil < :: S:0' -> S:0' -> True:False remove :: S:0' -> Cons:Nil -> Cons:Nil notEmpty :: Cons:Nil -> True:False True :: True:False False :: True:False remove[Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil !EQ :: S:0' -> S:0' -> True:False S :: S:0' -> S:0' 0' :: S:0' hole_Cons:Nil1_0 :: Cons:Nil hole_S:0'2_0 :: S:0' hole_True:False3_0 :: True:False gen_Cons:Nil4_0 :: Nat -> Cons:Nil gen_S:0'5_0 :: Nat -> S:0' Lemmas: <(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) -> True, rt in Omega(0) Generator Equations: gen_Cons:Nil4_0(0) <=> Nil gen_Cons:Nil4_0(+(x, 1)) <=> Cons(0', gen_Cons:Nil4_0(x)) gen_S:0'5_0(0) <=> 0' gen_S:0'5_0(+(x, 1)) <=> S(gen_S:0'5_0(x)) The following defined symbols remain to be analysed: !EQ, minsort, appmin, remove They will be analysed ascendingly in the following order: minsort = appmin remove < appmin !EQ < remove ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: !EQ(gen_S:0'5_0(n269_0), gen_S:0'5_0(+(1, n269_0))) -> False, rt in Omega(0) Induction Base: !EQ(gen_S:0'5_0(0), gen_S:0'5_0(+(1, 0))) ->_R^Omega(0) False Induction Step: !EQ(gen_S:0'5_0(+(n269_0, 1)), gen_S:0'5_0(+(1, +(n269_0, 1)))) ->_R^Omega(0) !EQ(gen_S:0'5_0(n269_0), gen_S:0'5_0(+(1, n269_0))) ->_IH False We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (12) Obligation: Innermost TRS: Rules: minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) minsort(Nil) -> Nil appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False remove(x', Cons(x, xs)) -> remove[Ite](!EQ(x', x), x', Cons(x, xs)) !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0', S(y)) -> False !EQ(S(x), 0') -> False !EQ(0', 0') -> True <(S(x), S(y)) -> <(x, y) <(0', S(y)) -> True <(x, 0') -> False remove[Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') remove[Ite](True, x', Cons(x, xs)) -> xs appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') Types: minsort :: Cons:Nil -> Cons:Nil Cons :: S:0' -> Cons:Nil -> Cons:Nil appmin :: S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil Nil :: Cons:Nil appmin[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil < :: S:0' -> S:0' -> True:False remove :: S:0' -> Cons:Nil -> Cons:Nil notEmpty :: Cons:Nil -> True:False True :: True:False False :: True:False remove[Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil !EQ :: S:0' -> S:0' -> True:False S :: S:0' -> S:0' 0' :: S:0' hole_Cons:Nil1_0 :: Cons:Nil hole_S:0'2_0 :: S:0' hole_True:False3_0 :: True:False gen_Cons:Nil4_0 :: Nat -> Cons:Nil gen_S:0'5_0 :: Nat -> S:0' Lemmas: <(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) -> True, rt in Omega(0) !EQ(gen_S:0'5_0(n269_0), gen_S:0'5_0(+(1, n269_0))) -> False, rt in Omega(0) Generator Equations: gen_Cons:Nil4_0(0) <=> Nil gen_Cons:Nil4_0(+(x, 1)) <=> Cons(0', gen_Cons:Nil4_0(x)) gen_S:0'5_0(0) <=> 0' gen_S:0'5_0(+(x, 1)) <=> S(gen_S:0'5_0(x)) The following defined symbols remain to be analysed: remove, minsort, appmin They will be analysed ascendingly in the following order: minsort = appmin remove < appmin ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: remove(gen_S:0'5_0(1), gen_Cons:Nil4_0(+(1, n572_0))) -> *6_0, rt in Omega(n572_0) Induction Base: remove(gen_S:0'5_0(1), gen_Cons:Nil4_0(+(1, 0))) Induction Step: remove(gen_S:0'5_0(1), gen_Cons:Nil4_0(+(1, +(n572_0, 1)))) ->_R^Omega(1) remove[Ite](!EQ(gen_S:0'5_0(1), 0'), gen_S:0'5_0(1), Cons(0', gen_Cons:Nil4_0(+(1, n572_0)))) ->_R^Omega(0) remove[Ite](False, gen_S:0'5_0(1), Cons(0', gen_Cons:Nil4_0(+(1, n572_0)))) ->_R^Omega(0) Cons(0', remove(gen_S:0'5_0(1), gen_Cons:Nil4_0(+(1, n572_0)))) ->_IH Cons(0', *6_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) minsort(Nil) -> Nil appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False remove(x', Cons(x, xs)) -> remove[Ite](!EQ(x', x), x', Cons(x, xs)) !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0', S(y)) -> False !EQ(S(x), 0') -> False !EQ(0', 0') -> True <(S(x), S(y)) -> <(x, y) <(0', S(y)) -> True <(x, 0') -> False remove[Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') remove[Ite](True, x', Cons(x, xs)) -> xs appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') Types: minsort :: Cons:Nil -> Cons:Nil Cons :: S:0' -> Cons:Nil -> Cons:Nil appmin :: S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil Nil :: Cons:Nil appmin[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil < :: S:0' -> S:0' -> True:False remove :: S:0' -> Cons:Nil -> Cons:Nil notEmpty :: Cons:Nil -> True:False True :: True:False False :: True:False remove[Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil !EQ :: S:0' -> S:0' -> True:False S :: S:0' -> S:0' 0' :: S:0' hole_Cons:Nil1_0 :: Cons:Nil hole_S:0'2_0 :: S:0' hole_True:False3_0 :: True:False gen_Cons:Nil4_0 :: Nat -> Cons:Nil gen_S:0'5_0 :: Nat -> S:0' Lemmas: <(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) -> True, rt in Omega(0) !EQ(gen_S:0'5_0(n269_0), gen_S:0'5_0(+(1, n269_0))) -> False, rt in Omega(0) Generator Equations: gen_Cons:Nil4_0(0) <=> Nil gen_Cons:Nil4_0(+(x, 1)) <=> Cons(0', gen_Cons:Nil4_0(x)) gen_S:0'5_0(0) <=> 0' gen_S:0'5_0(+(x, 1)) <=> S(gen_S:0'5_0(x)) The following defined symbols remain to be analysed: remove, minsort, appmin They will be analysed ascendingly in the following order: minsort = appmin remove < appmin ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: Innermost TRS: Rules: minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) minsort(Nil) -> Nil appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False remove(x', Cons(x, xs)) -> remove[Ite](!EQ(x', x), x', Cons(x, xs)) !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0', S(y)) -> False !EQ(S(x), 0') -> False !EQ(0', 0') -> True <(S(x), S(y)) -> <(x, y) <(0', S(y)) -> True <(x, 0') -> False remove[Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') remove[Ite](True, x', Cons(x, xs)) -> xs appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') Types: minsort :: Cons:Nil -> Cons:Nil Cons :: S:0' -> Cons:Nil -> Cons:Nil appmin :: S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil Nil :: Cons:Nil appmin[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil < :: S:0' -> S:0' -> True:False remove :: S:0' -> Cons:Nil -> Cons:Nil notEmpty :: Cons:Nil -> True:False True :: True:False False :: True:False remove[Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil !EQ :: S:0' -> S:0' -> True:False S :: S:0' -> S:0' 0' :: S:0' hole_Cons:Nil1_0 :: Cons:Nil hole_S:0'2_0 :: S:0' hole_True:False3_0 :: True:False gen_Cons:Nil4_0 :: Nat -> Cons:Nil gen_S:0'5_0 :: Nat -> S:0' Lemmas: <(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) -> True, rt in Omega(0) !EQ(gen_S:0'5_0(n269_0), gen_S:0'5_0(+(1, n269_0))) -> False, rt in Omega(0) remove(gen_S:0'5_0(1), gen_Cons:Nil4_0(+(1, n572_0))) -> *6_0, rt in Omega(n572_0) Generator Equations: gen_Cons:Nil4_0(0) <=> Nil gen_Cons:Nil4_0(+(x, 1)) <=> Cons(0', gen_Cons:Nil4_0(x)) gen_S:0'5_0(0) <=> 0' gen_S:0'5_0(+(x, 1)) <=> S(gen_S:0'5_0(x)) The following defined symbols remain to be analysed: appmin, minsort They will be analysed ascendingly in the following order: minsort = appmin