/export/starexec/sandbox2/solver/bin/starexec_run_tct_rci /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1),O(n^1)) * Step 1: Sum. WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: r1(cons(x,k),a) -> r1(k,cons(x,a)) r1(empty(),a) -> a rev(ls) -> r1(ls,empty()) - Signature: {r1/2,rev/1} / {cons/2,empty/0} - Obligation: innermost runtime complexity wrt. defined symbols {r1,rev} and constructors {cons,empty} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: Sum. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: r1(cons(x,k),a) -> r1(k,cons(x,a)) r1(empty(),a) -> a rev(ls) -> r1(ls,empty()) - Signature: {r1/2,rev/1} / {cons/2,empty/0} - Obligation: innermost runtime complexity wrt. defined symbols {r1,rev} and constructors {cons,empty} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () *** Step 1.a:1.a:1: Ara. MAYBE + Considered Problem: - Strict TRS: r1(cons(x,k),a) -> r1(k,cons(x,a)) r1(empty(),a) -> a rev(ls) -> r1(ls,empty()) - Signature: {r1/2,rev/1} / {cons/2,empty/0} - Obligation: innermost runtime complexity wrt. defined symbols {r1,rev} and constructors {cons,empty} + Applied Processor: Ara {minDegree = 1, maxDegree = 3, araTimeout = 15, araRuleShifting = Just 1, isBestCase = True, mkCompletelyDefined = False, verboseOutput = False} + Details: Signatures used: ---------------- F (TrsFun "cons") :: ["A"(0) x "A"(1)] -(1)-> "A"(1) F (TrsFun "cons") :: ["A"(0) x "A"(0)] -(0)-> "A"(0) F (TrsFun "empty") :: [] -(0)-> "A"(1) F (TrsFun "empty") :: [] -(0)-> "A"(0) F (TrsFun "main") :: ["A"(1)] -(1)-> "A"(0) F (TrsFun "r1") :: ["A"(1) x "A"(0)] -(1)-> "A"(0) F (TrsFun "rev") :: ["A"(1)] -(1)-> "A"(0) Cost-free Signatures used: -------------------------- Base Constructor Signatures used: --------------------------------- Following Still Strict Rules were Typed as: ------------------------------------------- 1. Strict: r1(cons(x,k),a) -> r1(k,cons(x,a)) r1(empty(),a) -> a rev(ls) -> r1(ls,empty()) main(x1) -> rev(x1) 2. Weak: *** Step 1.a:1.b:1: DecreasingLoops. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: r1(cons(x,k),a) -> r1(k,cons(x,a)) r1(empty(),a) -> a rev(ls) -> r1(ls,empty()) - Signature: {r1/2,rev/1} / {cons/2,empty/0} - Obligation: innermost runtime complexity wrt. defined symbols {r1,rev} and constructors {cons,empty} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: r1(y,z){y -> cons(x,y)} = r1(cons(x,y),z) ->^+ r1(y,cons(x,z)) = C[r1(y,cons(x,z)) = r1(y,z){z -> cons(x,z)}] ** Step 1.b:1: DependencyPairs. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: r1(cons(x,k),a) -> r1(k,cons(x,a)) r1(empty(),a) -> a rev(ls) -> r1(ls,empty()) - Signature: {r1/2,rev/1} / {cons/2,empty/0} - Obligation: innermost runtime complexity wrt. defined symbols {r1,rev} and constructors {cons,empty} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs r1#(cons(x,k),a) -> c_1(r1#(k,cons(x,a))) r1#(empty(),a) -> c_2() rev#(ls) -> c_3(r1#(ls,empty())) Weak DPs and mark the set of starting terms. ** Step 1.b:2: PredecessorEstimation. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: r1#(cons(x,k),a) -> c_1(r1#(k,cons(x,a))) r1#(empty(),a) -> c_2() rev#(ls) -> c_3(r1#(ls,empty())) - Weak TRS: r1(cons(x,k),a) -> r1(k,cons(x,a)) r1(empty(),a) -> a rev(ls) -> r1(ls,empty()) - Signature: {r1/2,rev/1,r1#/2,rev#/1} / {cons/2,empty/0,c_1/1,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {r1#,rev#} and constructors {cons,empty} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {2} by application of Pre({2}) = {1,3}. Here rules are labelled as follows: 1: r1#(cons(x,k),a) -> c_1(r1#(k,cons(x,a))) 2: r1#(empty(),a) -> c_2() 3: rev#(ls) -> c_3(r1#(ls,empty())) ** Step 1.b:3: RemoveWeakSuffixes. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: r1#(cons(x,k),a) -> c_1(r1#(k,cons(x,a))) rev#(ls) -> c_3(r1#(ls,empty())) - Weak DPs: r1#(empty(),a) -> c_2() - Weak TRS: r1(cons(x,k),a) -> r1(k,cons(x,a)) r1(empty(),a) -> a rev(ls) -> r1(ls,empty()) - Signature: {r1/2,rev/1,r1#/2,rev#/1} / {cons/2,empty/0,c_1/1,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {r1#,rev#} and constructors {cons,empty} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:r1#(cons(x,k),a) -> c_1(r1#(k,cons(x,a))) -->_1 r1#(empty(),a) -> c_2():3 -->_1 r1#(cons(x,k),a) -> c_1(r1#(k,cons(x,a))):1 2:S:rev#(ls) -> c_3(r1#(ls,empty())) -->_1 r1#(empty(),a) -> c_2():3 -->_1 r1#(cons(x,k),a) -> c_1(r1#(k,cons(x,a))):1 3:W:r1#(empty(),a) -> c_2() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: r1#(empty(),a) -> c_2() ** Step 1.b:4: RemoveHeads. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: r1#(cons(x,k),a) -> c_1(r1#(k,cons(x,a))) rev#(ls) -> c_3(r1#(ls,empty())) - Weak TRS: r1(cons(x,k),a) -> r1(k,cons(x,a)) r1(empty(),a) -> a rev(ls) -> r1(ls,empty()) - Signature: {r1/2,rev/1,r1#/2,rev#/1} / {cons/2,empty/0,c_1/1,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {r1#,rev#} and constructors {cons,empty} + Applied Processor: RemoveHeads + Details: Consider the dependency graph 1:S:r1#(cons(x,k),a) -> c_1(r1#(k,cons(x,a))) -->_1 r1#(cons(x,k),a) -> c_1(r1#(k,cons(x,a))):1 2:S:rev#(ls) -> c_3(r1#(ls,empty())) -->_1 r1#(cons(x,k),a) -> c_1(r1#(k,cons(x,a))):1 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). [(2,rev#(ls) -> c_3(r1#(ls,empty())))] ** Step 1.b:5: UsableRules. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: r1#(cons(x,k),a) -> c_1(r1#(k,cons(x,a))) - Weak TRS: r1(cons(x,k),a) -> r1(k,cons(x,a)) r1(empty(),a) -> a rev(ls) -> r1(ls,empty()) - Signature: {r1/2,rev/1,r1#/2,rev#/1} / {cons/2,empty/0,c_1/1,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {r1#,rev#} and constructors {cons,empty} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: r1#(cons(x,k),a) -> c_1(r1#(k,cons(x,a))) ** Step 1.b:6: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: r1#(cons(x,k),a) -> c_1(r1#(k,cons(x,a))) - Signature: {r1/2,rev/1,r1#/2,rev#/1} / {cons/2,empty/0,c_1/1,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {r1#,rev#} and constructors {cons,empty} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1} Following symbols are considered usable: {r1#,rev#} TcT has computed the following interpretation: p(cons) = [1] x1 + [1] x2 + [2] p(empty) = [1] p(r1) = [1] x2 + [8] p(rev) = [2] x1 + [0] p(r1#) = [8] x1 + [1] x2 + [5] p(rev#) = [8] x1 + [1] p(c_1) = [1] x1 + [13] p(c_2) = [0] p(c_3) = [0] Following rules are strictly oriented: r1#(cons(x,k),a) = [1] a + [8] k + [8] x + [21] > [1] a + [8] k + [1] x + [20] = c_1(r1#(k,cons(x,a))) Following rules are (at-least) weakly oriented: ** Step 1.b:7: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: r1#(cons(x,k),a) -> c_1(r1#(k,cons(x,a))) - Signature: {r1/2,rev/1,r1#/2,rev#/1} / {cons/2,empty/0,c_1/1,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {r1#,rev#} and constructors {cons,empty} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))