/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (8) CpxRNTS (9) CompleteCoflocoProof [FINISHED, 490 ms] (10) BOUNDS(1, n^2) (11) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTRS (13) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (14) typed CpxTrs (15) OrderProof [LOWER BOUND(ID), 0 ms] (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 247 ms] (18) BEST (19) proven lower bound (20) LowerBoundPropagationProof [FINISHED, 0 ms] (21) BOUNDS(n^1, INF) (22) typed CpxTrs (23) RewriteLemmaProof [LOWER BOUND(ID), 129 ms] (24) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(true, x, y) -> f(gt(x, y), x, round(s(y))) round(0) -> 0 round(s(0)) -> s(s(0)) round(s(s(x))) -> s(s(round(x))) gt(0, v) -> false gt(s(u), 0) -> true gt(s(u), s(v)) -> gt(u, v) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(true, x, y) -> f(gt(x, y), x, round(s(y))) [1] round(0) -> 0 [1] round(s(0)) -> s(s(0)) [1] round(s(s(x))) -> s(s(round(x))) [1] gt(0, v) -> false [1] gt(s(u), 0) -> true [1] gt(s(u), s(v)) -> gt(u, v) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(true, x, y) -> f(gt(x, y), x, round(s(y))) [1] round(0) -> 0 [1] round(s(0)) -> s(s(0)) [1] round(s(s(x))) -> s(s(round(x))) [1] gt(0, v) -> false [1] gt(s(u), 0) -> true [1] gt(s(u), s(v)) -> gt(u, v) [1] The TRS has the following type information: f :: true:false -> s:0 -> s:0 -> f true :: true:false gt :: s:0 -> s:0 -> true:false round :: s:0 -> s:0 s :: s:0 -> s:0 0 :: s:0 false :: true:false Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: f(v0, v1, v2) -> null_f [0] And the following fresh constants: null_f ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(true, x, y) -> f(gt(x, y), x, round(s(y))) [1] round(0) -> 0 [1] round(s(0)) -> s(s(0)) [1] round(s(s(x))) -> s(s(round(x))) [1] gt(0, v) -> false [1] gt(s(u), 0) -> true [1] gt(s(u), s(v)) -> gt(u, v) [1] f(v0, v1, v2) -> null_f [0] The TRS has the following type information: f :: true:false -> s:0 -> s:0 -> null_f true :: true:false gt :: s:0 -> s:0 -> true:false round :: s:0 -> s:0 s :: s:0 -> s:0 0 :: s:0 false :: true:false null_f :: null_f Rewrite Strategy: INNERMOST ---------------------------------------- (7) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: true => 1 0 => 0 false => 0 null_f => 0 ---------------------------------------- (8) Obligation: Complexity RNTS consisting of the following rules: f(z, z', z'') -{ 1 }-> f(gt(x, y), x, round(1 + y)) :|: z' = x, z'' = y, z = 1, x >= 0, y >= 0 f(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 gt(z, z') -{ 1 }-> gt(u, v) :|: v >= 0, z' = 1 + v, z = 1 + u, u >= 0 gt(z, z') -{ 1 }-> 1 :|: z = 1 + u, z' = 0, u >= 0 gt(z, z') -{ 1 }-> 0 :|: v >= 0, z' = v, z = 0 round(z) -{ 1 }-> 0 :|: z = 0 round(z) -{ 1 }-> 1 + (1 + round(x)) :|: x >= 0, z = 1 + (1 + x) round(z) -{ 1 }-> 1 + (1 + 0) :|: z = 1 + 0 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (9) CompleteCoflocoProof (FINISHED) Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: eq(start(V1, V, V2),0,[f(V1, V, V2, Out)],[V1 >= 0,V >= 0,V2 >= 0]). eq(start(V1, V, V2),0,[round(V1, Out)],[V1 >= 0]). eq(start(V1, V, V2),0,[gt(V1, V, Out)],[V1 >= 0,V >= 0]). eq(f(V1, V, V2, Out),1,[gt(V4, V3, Ret0),round(1 + V3, Ret2),f(Ret0, V4, Ret2, Ret)],[Out = Ret,V = V4,V2 = V3,V1 = 1,V4 >= 0,V3 >= 0]). eq(round(V1, Out),1,[],[Out = 0,V1 = 0]). eq(round(V1, Out),1,[],[Out = 2,V1 = 1]). eq(round(V1, Out),1,[round(V5, Ret11)],[Out = 2 + Ret11,V5 >= 0,V1 = 2 + V5]). eq(gt(V1, V, Out),1,[],[Out = 0,V6 >= 0,V = V6,V1 = 0]). eq(gt(V1, V, Out),1,[],[Out = 1,V1 = 1 + V7,V = 0,V7 >= 0]). eq(gt(V1, V, Out),1,[gt(V8, V9, Ret1)],[Out = Ret1,V9 >= 0,V = 1 + V9,V1 = 1 + V8,V8 >= 0]). eq(f(V1, V, V2, Out),0,[],[Out = 0,V11 >= 0,V2 = V12,V10 >= 0,V1 = V11,V = V10,V12 >= 0]). input_output_vars(f(V1,V,V2,Out),[V1,V,V2],[Out]). input_output_vars(round(V1,Out),[V1],[Out]). input_output_vars(gt(V1,V,Out),[V1,V],[Out]). CoFloCo proof output: Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. recursive : [gt/3] 1. recursive : [round/2] 2. recursive : [f/4] 3. non_recursive : [start/3] #### Obtained direct recursion through partial evaluation 0. SCC is partially evaluated into gt/3 1. SCC is partially evaluated into round/2 2. SCC is partially evaluated into f/4 3. SCC is partially evaluated into start/3 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations gt/3 * CE 11 is refined into CE [12] * CE 10 is refined into CE [13] * CE 9 is refined into CE [14] ### Cost equations --> "Loop" of gt/3 * CEs [13] --> Loop 10 * CEs [14] --> Loop 11 * CEs [12] --> Loop 12 ### Ranking functions of CR gt(V1,V,Out) * RF of phase [12]: [V,V1] #### Partial ranking functions of CR gt(V1,V,Out) * Partial RF of phase [12]: - RF of loop [12:1]: V V1 ### Specialization of cost equations round/2 * CE 8 is refined into CE [15] * CE 7 is refined into CE [16] * CE 6 is refined into CE [17] ### Cost equations --> "Loop" of round/2 * CEs [16] --> Loop 13 * CEs [17] --> Loop 14 * CEs [15] --> Loop 15 ### Ranking functions of CR round(V1,Out) * RF of phase [15]: [V1-1] #### Partial ranking functions of CR round(V1,Out) * Partial RF of phase [15]: - RF of loop [15:1]: V1-1 ### Specialization of cost equations f/4 * CE 5 is refined into CE [18] * CE 4 is refined into CE [19,20,21,22,23,24,25,26] ### Cost equations --> "Loop" of f/4 * CEs [25] --> Loop 16 * CEs [26] --> Loop 17 * CEs [24] --> Loop 18 * CEs [23] --> Loop 19 * CEs [22] --> Loop 20 * CEs [21] --> Loop 21 * CEs [20] --> Loop 22 * CEs [19] --> Loop 23 * CEs [18] --> Loop 24 ### Ranking functions of CR f(V1,V,V2,Out) * RF of phase [16,17]: [V-V2] #### Partial ranking functions of CR f(V1,V,V2,Out) * Partial RF of phase [16,17]: - RF of loop [16:1]: V/2-V2/2 - RF of loop [17:1]: V-V2 ### Specialization of cost equations start/3 * CE 1 is refined into CE [27,28,29,30,31] * CE 2 is refined into CE [32,33,34,35] * CE 3 is refined into CE [36,37,38,39] ### Cost equations --> "Loop" of start/3 * CEs [34,35,39] --> Loop 25 * CEs [38] --> Loop 26 * CEs [27] --> Loop 27 * CEs [37] --> Loop 28 * CEs [28,29,30,31,33] --> Loop 29 * CEs [32,36] --> Loop 30 ### Ranking functions of CR start(V1,V,V2) #### Partial ranking functions of CR start(V1,V,V2) Computing Bounds ===================================== #### Cost of chains of gt(V1,V,Out): * Chain [[12],11]: 1*it(12)+1 Such that:it(12) =< V1 with precondition: [Out=0,V1>=1,V>=V1] * Chain [[12],10]: 1*it(12)+1 Such that:it(12) =< V with precondition: [Out=1,V>=1,V1>=V+1] * Chain [11]: 1 with precondition: [V1=0,Out=0,V>=0] * Chain [10]: 1 with precondition: [V=0,Out=1,V1>=1] #### Cost of chains of round(V1,Out): * Chain [[15],14]: 1*it(15)+1 Such that:it(15) =< Out with precondition: [V1=Out,V1>=2] * Chain [[15],13]: 1*it(15)+1 Such that:it(15) =< Out with precondition: [V1+1=Out,V1>=3] * Chain [14]: 1 with precondition: [V1=0,Out=0] * Chain [13]: 1 with precondition: [V1=1,Out=2] #### Cost of chains of f(V1,V,V2,Out): * Chain [[16,17],24]: 3*it(16)+3*it(17)+2*s(9)+2*s(11)+0 Such that:aux(3) =< V+1 aux(5) =< V-V2 aux(6) =< V-V2+1 it(16) =< V/2-V2/2 it(16) =< aux(5) it(17) =< aux(5) it(16) =< aux(6) it(17) =< aux(6) aux(4) =< aux(3)-1 s(10) =< it(16)*aux(3) s(12) =< it(17)*aux(4) s(11) =< s(12) s(9) =< s(10) with precondition: [V1=1,Out=0,V2>=1,V>=V2+1] * Chain [[16,17],19,24]: 3*it(16)+3*it(17)+2*s(9)+2*s(11)+1*s(13)+1*s(14)+3 Such that:s(13) =< V aux(3) =< V+1 s(14) =< V+3 aux(5) =< V-V2 aux(6) =< V-V2+1 it(16) =< V/2-V2/2 it(16) =< aux(5) it(17) =< aux(5) it(16) =< aux(6) it(17) =< aux(6) aux(4) =< aux(3)-1 s(10) =< it(16)*aux(3) s(12) =< it(17)*aux(4) s(11) =< s(12) s(9) =< s(10) with precondition: [V1=1,Out=0,V2>=1,V>=V2+1] * Chain [[16,17],18,24]: 3*it(16)+3*it(17)+2*s(9)+2*s(11)+1*s(15)+1*s(16)+3 Such that:s(15) =< V aux(3) =< V+1 s(16) =< V+2 aux(5) =< V-V2 aux(6) =< V-V2+1 it(16) =< V/2-V2/2 it(16) =< aux(5) it(17) =< aux(5) it(16) =< aux(6) it(17) =< aux(6) aux(4) =< aux(3)-1 s(10) =< it(16)*aux(3) s(12) =< it(17)*aux(4) s(11) =< s(12) s(9) =< s(10) with precondition: [V1=1,Out=0,V2>=1,V>=V2+1] * Chain [24]: 0 with precondition: [Out=0,V1>=0,V>=0,V2>=0] * Chain [23,24]: 3 with precondition: [V1=1,V=0,V2=0,Out=0] * Chain [22,24]: 1*s(17)+3 Such that:s(17) =< V2+2 with precondition: [V1=1,V=0,Out=0,V2>=2] * Chain [21,24]: 1*s(18)+3 Such that:s(18) =< V2+1 with precondition: [V1=1,V=0,Out=0,V2>=1] * Chain [20,[16,17],24]: 3*it(16)+3*it(17)+2*s(9)+2*s(11)+3 Such that:aux(3) =< V+1 it(16) =< V/2 aux(7) =< V it(16) =< aux(7) it(17) =< aux(7) aux(4) =< aux(3)-1 s(10) =< it(16)*aux(3) s(12) =< it(17)*aux(4) s(11) =< s(12) s(9) =< s(10) with precondition: [V1=1,V2=0,Out=0,V>=3] * Chain [20,[16,17],19,24]: 3*it(16)+4*it(17)+2*s(9)+2*s(11)+1*s(14)+6 Such that:aux(3) =< V+1 s(14) =< V+3 it(16) =< V/2 aux(8) =< V it(17) =< aux(8) it(16) =< aux(8) aux(4) =< aux(3)-1 s(10) =< it(16)*aux(3) s(12) =< it(17)*aux(4) s(11) =< s(12) s(9) =< s(10) with precondition: [V1=1,V2=0,Out=0,V>=3] * Chain [20,[16,17],18,24]: 3*it(16)+4*it(17)+2*s(9)+2*s(11)+1*s(16)+6 Such that:aux(3) =< V+1 s(16) =< V+2 it(16) =< V/2 aux(9) =< V it(17) =< aux(9) it(16) =< aux(9) aux(4) =< aux(3)-1 s(10) =< it(16)*aux(3) s(12) =< it(17)*aux(4) s(11) =< s(12) s(9) =< s(10) with precondition: [V1=1,V2=0,Out=0,V>=3] * Chain [20,24]: 3 with precondition: [V1=1,V2=0,Out=0,V>=1] * Chain [20,19,24]: 1*s(13)+1*s(14)+6 Such that:s(14) =< 4 s(13) =< V with precondition: [V1=1,V2=0,Out=0,2>=V,V>=1] * Chain [20,18,24]: 1*s(15)+1*s(16)+6 Such that:s(16) =< 3 s(15) =< V with precondition: [V1=1,V2=0,Out=0,2>=V,V>=1] * Chain [19,24]: 1*s(13)+1*s(14)+3 Such that:s(13) =< V s(14) =< V2+2 with precondition: [V1=1,Out=0,V>=1,V2>=2,V2>=V] * Chain [18,24]: 1*s(15)+1*s(16)+3 Such that:s(15) =< V s(16) =< V2+1 with precondition: [V1=1,Out=0,V>=1,V2>=V] #### Cost of chains of start(V1,V,V2): * Chain [30]: 1 with precondition: [V1=0] * Chain [29]: 2*s(92)+2*s(93)+1*s(94)+1*s(95)+2*s(96)+2*s(97)+17*s(101)+9*s(102)+6*s(106)+6*s(107)+9*s(120)+9*s(121)+6*s(125)+6*s(126)+6 Such that:s(94) =< 3 s(95) =< 4 s(116) =< V-V2 s(117) =< V-V2+1 s(100) =< V/2 s(118) =< V/2-V2/2 aux(19) =< V aux(20) =< V+1 aux(21) =< V+2 aux(22) =< V+3 aux(23) =< V2+1 aux(24) =< V2+2 s(96) =< aux(21) s(97) =< aux(22) s(92) =< aux(23) s(93) =< aux(24) s(101) =< aux(19) s(102) =< s(100) s(102) =< aux(19) s(103) =< aux(20)-1 s(104) =< s(102)*aux(20) s(105) =< s(101)*s(103) s(106) =< s(105) s(107) =< s(104) s(120) =< s(118) s(120) =< s(116) s(121) =< s(116) s(120) =< s(117) s(121) =< s(117) s(123) =< s(120)*aux(20) s(124) =< s(121)*s(103) s(125) =< s(124) s(126) =< s(123) with precondition: [V1=1] * Chain [28]: 1 with precondition: [V=0,V1>=1] * Chain [27]: 3 with precondition: [V1>=0,V>=0,V2>=0] * Chain [26]: 1*s(127)+1 Such that:s(127) =< V1 with precondition: [V1>=1,V>=V1] * Chain [25]: 1*s(128)+1*s(129)+1*s(130)+1 Such that:s(129) =< V1 s(128) =< V1+1 s(130) =< V with precondition: [V1>=2] Closed-form bounds of start(V1,V,V2): ------------------------------------- * Chain [30] with precondition: [V1=0] - Upper bound: 1 - Complexity: constant * Chain [29] with precondition: [V1=1] - Upper bound: nat(V)*17+13+nat(V)*6*nat(nat(V+1)+ -1)+nat(nat(V+1)+ -1)*6*nat(V-V2)+nat(V+1)*6*nat(V/2-V2/2)+nat(V+1)*6*nat(V/2)+nat(V+2)*2+nat(V+3)*2+nat(V2+1)*2+nat(V2+2)*2+nat(V-V2)*9+nat(V/2-V2/2)*9+nat(V/2)*9 - Complexity: n^2 * Chain [28] with precondition: [V=0,V1>=1] - Upper bound: 1 - Complexity: constant * Chain [27] with precondition: [V1>=0,V>=0,V2>=0] - Upper bound: 3 - Complexity: constant * Chain [26] with precondition: [V1>=1,V>=V1] - Upper bound: V1+1 - Complexity: n * Chain [25] with precondition: [V1>=2] - Upper bound: V1+1+nat(V)+(V1+1) - Complexity: n ### Maximum cost of start(V1,V,V2): max([max([2,nat(V)*17+12+nat(V)*6*nat(nat(V+1)+ -1)+nat(nat(V+1)+ -1)*6*nat(V-V2)+nat(V+1)*6*nat(V/2-V2/2)+nat(V+1)*6*nat(V/2)+nat(V+2)*2+nat(V+3)*2+nat(V2+1)*2+nat(V2+2)*2+nat(V-V2)*9+nat(V/2-V2/2)*9+nat(V/2)*9]),V1+1+nat(V)+V1])+1 Asymptotic class: n^2 * Total analysis performed in 404 ms. ---------------------------------------- (10) BOUNDS(1, n^2) ---------------------------------------- (11) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (12) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(true, x, y) -> f(gt(x, y), x, round(s(y))) round(0') -> 0' round(s(0')) -> s(s(0')) round(s(s(x))) -> s(s(round(x))) gt(0', v) -> false gt(s(u), 0') -> true gt(s(u), s(v)) -> gt(u, v) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (13) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (14) Obligation: Innermost TRS: Rules: f(true, x, y) -> f(gt(x, y), x, round(s(y))) round(0') -> 0' round(s(0')) -> s(s(0')) round(s(s(x))) -> s(s(round(x))) gt(0', v) -> false gt(s(u), 0') -> true gt(s(u), s(v)) -> gt(u, v) Types: f :: true:false -> s:0' -> s:0' -> f true :: true:false gt :: s:0' -> s:0' -> true:false round :: s:0' -> s:0' s :: s:0' -> s:0' 0' :: s:0' false :: true:false hole_f1_0 :: f hole_true:false2_0 :: true:false hole_s:0'3_0 :: s:0' gen_s:0'4_0 :: Nat -> s:0' ---------------------------------------- (15) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f, gt, round They will be analysed ascendingly in the following order: gt < f round < f ---------------------------------------- (16) Obligation: Innermost TRS: Rules: f(true, x, y) -> f(gt(x, y), x, round(s(y))) round(0') -> 0' round(s(0')) -> s(s(0')) round(s(s(x))) -> s(s(round(x))) gt(0', v) -> false gt(s(u), 0') -> true gt(s(u), s(v)) -> gt(u, v) Types: f :: true:false -> s:0' -> s:0' -> f true :: true:false gt :: s:0' -> s:0' -> true:false round :: s:0' -> s:0' s :: s:0' -> s:0' 0' :: s:0' false :: true:false hole_f1_0 :: f hole_true:false2_0 :: true:false hole_s:0'3_0 :: s:0' gen_s:0'4_0 :: Nat -> s:0' Generator Equations: gen_s:0'4_0(0) <=> 0' gen_s:0'4_0(+(x, 1)) <=> s(gen_s:0'4_0(x)) The following defined symbols remain to be analysed: gt, f, round They will be analysed ascendingly in the following order: gt < f round < f ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: gt(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) -> false, rt in Omega(1 + n6_0) Induction Base: gt(gen_s:0'4_0(0), gen_s:0'4_0(0)) ->_R^Omega(1) false Induction Step: gt(gen_s:0'4_0(+(n6_0, 1)), gen_s:0'4_0(+(n6_0, 1))) ->_R^Omega(1) gt(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) ->_IH false We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (18) Complex Obligation (BEST) ---------------------------------------- (19) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: f(true, x, y) -> f(gt(x, y), x, round(s(y))) round(0') -> 0' round(s(0')) -> s(s(0')) round(s(s(x))) -> s(s(round(x))) gt(0', v) -> false gt(s(u), 0') -> true gt(s(u), s(v)) -> gt(u, v) Types: f :: true:false -> s:0' -> s:0' -> f true :: true:false gt :: s:0' -> s:0' -> true:false round :: s:0' -> s:0' s :: s:0' -> s:0' 0' :: s:0' false :: true:false hole_f1_0 :: f hole_true:false2_0 :: true:false hole_s:0'3_0 :: s:0' gen_s:0'4_0 :: Nat -> s:0' Generator Equations: gen_s:0'4_0(0) <=> 0' gen_s:0'4_0(+(x, 1)) <=> s(gen_s:0'4_0(x)) The following defined symbols remain to be analysed: gt, f, round They will be analysed ascendingly in the following order: gt < f round < f ---------------------------------------- (20) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (21) BOUNDS(n^1, INF) ---------------------------------------- (22) Obligation: Innermost TRS: Rules: f(true, x, y) -> f(gt(x, y), x, round(s(y))) round(0') -> 0' round(s(0')) -> s(s(0')) round(s(s(x))) -> s(s(round(x))) gt(0', v) -> false gt(s(u), 0') -> true gt(s(u), s(v)) -> gt(u, v) Types: f :: true:false -> s:0' -> s:0' -> f true :: true:false gt :: s:0' -> s:0' -> true:false round :: s:0' -> s:0' s :: s:0' -> s:0' 0' :: s:0' false :: true:false hole_f1_0 :: f hole_true:false2_0 :: true:false hole_s:0'3_0 :: s:0' gen_s:0'4_0 :: Nat -> s:0' Lemmas: gt(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) -> false, rt in Omega(1 + n6_0) Generator Equations: gen_s:0'4_0(0) <=> 0' gen_s:0'4_0(+(x, 1)) <=> s(gen_s:0'4_0(x)) The following defined symbols remain to be analysed: round, f They will be analysed ascendingly in the following order: round < f ---------------------------------------- (23) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: round(gen_s:0'4_0(*(2, n253_0))) -> gen_s:0'4_0(*(2, n253_0)), rt in Omega(1 + n253_0) Induction Base: round(gen_s:0'4_0(*(2, 0))) ->_R^Omega(1) 0' Induction Step: round(gen_s:0'4_0(*(2, +(n253_0, 1)))) ->_R^Omega(1) s(s(round(gen_s:0'4_0(*(2, n253_0))))) ->_IH s(s(gen_s:0'4_0(*(2, c254_0)))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (24) Obligation: Innermost TRS: Rules: f(true, x, y) -> f(gt(x, y), x, round(s(y))) round(0') -> 0' round(s(0')) -> s(s(0')) round(s(s(x))) -> s(s(round(x))) gt(0', v) -> false gt(s(u), 0') -> true gt(s(u), s(v)) -> gt(u, v) Types: f :: true:false -> s:0' -> s:0' -> f true :: true:false gt :: s:0' -> s:0' -> true:false round :: s:0' -> s:0' s :: s:0' -> s:0' 0' :: s:0' false :: true:false hole_f1_0 :: f hole_true:false2_0 :: true:false hole_s:0'3_0 :: s:0' gen_s:0'4_0 :: Nat -> s:0' Lemmas: gt(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) -> false, rt in Omega(1 + n6_0) round(gen_s:0'4_0(*(2, n253_0))) -> gen_s:0'4_0(*(2, n253_0)), rt in Omega(1 + n253_0) Generator Equations: gen_s:0'4_0(0) <=> 0' gen_s:0'4_0(+(x, 1)) <=> s(gen_s:0'4_0(x)) The following defined symbols remain to be analysed: f