/export/starexec/sandbox2/solver/bin/starexec_run_tct_rci /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1),?) * Step 1: Sum. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: cond(false(),x,y) -> 0() cond(true(),x,y) -> s(minus(x,s(y))) ge(u,0()) -> true() ge(0(),s(v)) -> false() ge(s(u),s(v)) -> ge(u,v) minus(x,y) -> cond(ge(x,s(y)),x,y) - Signature: {cond/3,ge/2,minus/2} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {cond,ge,minus} and constructors {0,false,s,true} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: Sum. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: cond(false(),x,y) -> 0() cond(true(),x,y) -> s(minus(x,s(y))) ge(u,0()) -> true() ge(0(),s(v)) -> false() ge(s(u),s(v)) -> ge(u,v) minus(x,y) -> cond(ge(x,s(y)),x,y) - Signature: {cond/3,ge/2,minus/2} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {cond,ge,minus} and constructors {0,false,s,true} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:2: DecreasingLoops. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: cond(false(),x,y) -> 0() cond(true(),x,y) -> s(minus(x,s(y))) ge(u,0()) -> true() ge(0(),s(v)) -> false() ge(s(u),s(v)) -> ge(u,v) minus(x,y) -> cond(ge(x,s(y)),x,y) - Signature: {cond/3,ge/2,minus/2} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {cond,ge,minus} and constructors {0,false,s,true} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: ge(x,y){x -> s(x),y -> s(y)} = ge(s(x),s(y)) ->^+ ge(x,y) = C[ge(x,y) = ge(x,y){}] ** Step 1.b:1: DependencyPairs. MAYBE + Considered Problem: - Strict TRS: cond(false(),x,y) -> 0() cond(true(),x,y) -> s(minus(x,s(y))) ge(u,0()) -> true() ge(0(),s(v)) -> false() ge(s(u),s(v)) -> ge(u,v) minus(x,y) -> cond(ge(x,s(y)),x,y) - Signature: {cond/3,ge/2,minus/2} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {cond,ge,minus} and constructors {0,false,s,true} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs cond#(false(),x,y) -> c_1() cond#(true(),x,y) -> c_2(minus#(x,s(y))) ge#(u,0()) -> c_3() ge#(0(),s(v)) -> c_4() ge#(s(u),s(v)) -> c_5(ge#(u,v)) minus#(x,y) -> c_6(cond#(ge(x,s(y)),x,y),ge#(x,s(y))) Weak DPs and mark the set of starting terms. ** Step 1.b:2: PredecessorEstimation. MAYBE + Considered Problem: - Strict DPs: cond#(false(),x,y) -> c_1() cond#(true(),x,y) -> c_2(minus#(x,s(y))) ge#(u,0()) -> c_3() ge#(0(),s(v)) -> c_4() ge#(s(u),s(v)) -> c_5(ge#(u,v)) minus#(x,y) -> c_6(cond#(ge(x,s(y)),x,y),ge#(x,s(y))) - Weak TRS: cond(false(),x,y) -> 0() cond(true(),x,y) -> s(minus(x,s(y))) ge(u,0()) -> true() ge(0(),s(v)) -> false() ge(s(u),s(v)) -> ge(u,v) minus(x,y) -> cond(ge(x,s(y)),x,y) - Signature: {cond/3,ge/2,minus/2,cond#/3,ge#/2,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {cond#,ge#,minus#} and constructors {0,false,s,true} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,3,4} by application of Pre({1,3,4}) = {5,6}. Here rules are labelled as follows: 1: cond#(false(),x,y) -> c_1() 2: cond#(true(),x,y) -> c_2(minus#(x,s(y))) 3: ge#(u,0()) -> c_3() 4: ge#(0(),s(v)) -> c_4() 5: ge#(s(u),s(v)) -> c_5(ge#(u,v)) 6: minus#(x,y) -> c_6(cond#(ge(x,s(y)),x,y),ge#(x,s(y))) ** Step 1.b:3: RemoveWeakSuffixes. MAYBE + Considered Problem: - Strict DPs: cond#(true(),x,y) -> c_2(minus#(x,s(y))) ge#(s(u),s(v)) -> c_5(ge#(u,v)) minus#(x,y) -> c_6(cond#(ge(x,s(y)),x,y),ge#(x,s(y))) - Weak DPs: cond#(false(),x,y) -> c_1() ge#(u,0()) -> c_3() ge#(0(),s(v)) -> c_4() - Weak TRS: cond(false(),x,y) -> 0() cond(true(),x,y) -> s(minus(x,s(y))) ge(u,0()) -> true() ge(0(),s(v)) -> false() ge(s(u),s(v)) -> ge(u,v) minus(x,y) -> cond(ge(x,s(y)),x,y) - Signature: {cond/3,ge/2,minus/2,cond#/3,ge#/2,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {cond#,ge#,minus#} and constructors {0,false,s,true} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:cond#(true(),x,y) -> c_2(minus#(x,s(y))) -->_1 minus#(x,y) -> c_6(cond#(ge(x,s(y)),x,y),ge#(x,s(y))):3 2:S:ge#(s(u),s(v)) -> c_5(ge#(u,v)) -->_1 ge#(0(),s(v)) -> c_4():6 -->_1 ge#(u,0()) -> c_3():5 -->_1 ge#(s(u),s(v)) -> c_5(ge#(u,v)):2 3:S:minus#(x,y) -> c_6(cond#(ge(x,s(y)),x,y),ge#(x,s(y))) -->_2 ge#(0(),s(v)) -> c_4():6 -->_1 cond#(false(),x,y) -> c_1():4 -->_2 ge#(s(u),s(v)) -> c_5(ge#(u,v)):2 -->_1 cond#(true(),x,y) -> c_2(minus#(x,s(y))):1 4:W:cond#(false(),x,y) -> c_1() 5:W:ge#(u,0()) -> c_3() 6:W:ge#(0(),s(v)) -> c_4() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: ge#(u,0()) -> c_3() 4: cond#(false(),x,y) -> c_1() 6: ge#(0(),s(v)) -> c_4() ** Step 1.b:4: UsableRules. MAYBE + Considered Problem: - Strict DPs: cond#(true(),x,y) -> c_2(minus#(x,s(y))) ge#(s(u),s(v)) -> c_5(ge#(u,v)) minus#(x,y) -> c_6(cond#(ge(x,s(y)),x,y),ge#(x,s(y))) - Weak TRS: cond(false(),x,y) -> 0() cond(true(),x,y) -> s(minus(x,s(y))) ge(u,0()) -> true() ge(0(),s(v)) -> false() ge(s(u),s(v)) -> ge(u,v) minus(x,y) -> cond(ge(x,s(y)),x,y) - Signature: {cond/3,ge/2,minus/2,cond#/3,ge#/2,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {cond#,ge#,minus#} and constructors {0,false,s,true} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: ge(u,0()) -> true() ge(0(),s(v)) -> false() ge(s(u),s(v)) -> ge(u,v) cond#(true(),x,y) -> c_2(minus#(x,s(y))) ge#(s(u),s(v)) -> c_5(ge#(u,v)) minus#(x,y) -> c_6(cond#(ge(x,s(y)),x,y),ge#(x,s(y))) ** Step 1.b:5: DecomposeDG. MAYBE + Considered Problem: - Strict DPs: cond#(true(),x,y) -> c_2(minus#(x,s(y))) ge#(s(u),s(v)) -> c_5(ge#(u,v)) minus#(x,y) -> c_6(cond#(ge(x,s(y)),x,y),ge#(x,s(y))) - Weak TRS: ge(u,0()) -> true() ge(0(),s(v)) -> false() ge(s(u),s(v)) -> ge(u,v) - Signature: {cond/3,ge/2,minus/2,cond#/3,ge#/2,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {cond#,ge#,minus#} and constructors {0,false,s,true} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Nothing, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component cond#(true(),x,y) -> c_2(minus#(x,s(y))) minus#(x,y) -> c_6(cond#(ge(x,s(y)),x,y),ge#(x,s(y))) and a lower component ge#(s(u),s(v)) -> c_5(ge#(u,v)) Further, following extension rules are added to the lower component. cond#(true(),x,y) -> minus#(x,s(y)) minus#(x,y) -> cond#(ge(x,s(y)),x,y) minus#(x,y) -> ge#(x,s(y)) *** Step 1.b:5.a:1: SimplifyRHS. MAYBE + Considered Problem: - Strict DPs: cond#(true(),x,y) -> c_2(minus#(x,s(y))) minus#(x,y) -> c_6(cond#(ge(x,s(y)),x,y),ge#(x,s(y))) - Weak TRS: ge(u,0()) -> true() ge(0(),s(v)) -> false() ge(s(u),s(v)) -> ge(u,v) - Signature: {cond/3,ge/2,minus/2,cond#/3,ge#/2,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {cond#,ge#,minus#} and constructors {0,false,s,true} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:cond#(true(),x,y) -> c_2(minus#(x,s(y))) -->_1 minus#(x,y) -> c_6(cond#(ge(x,s(y)),x,y),ge#(x,s(y))):2 2:S:minus#(x,y) -> c_6(cond#(ge(x,s(y)),x,y),ge#(x,s(y))) -->_1 cond#(true(),x,y) -> c_2(minus#(x,s(y))):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: minus#(x,y) -> c_6(cond#(ge(x,s(y)),x,y)) *** Step 1.b:5.a:2: WeightGap. MAYBE + Considered Problem: - Strict DPs: cond#(true(),x,y) -> c_2(minus#(x,s(y))) minus#(x,y) -> c_6(cond#(ge(x,s(y)),x,y)) - Weak TRS: ge(u,0()) -> true() ge(0(),s(v)) -> false() ge(s(u),s(v)) -> ge(u,v) - Signature: {cond/3,ge/2,minus/2,cond#/3,ge#/2,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {cond#,ge#,minus#} and constructors {0,false,s,true} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(cond#) = {1}, uargs(c_2) = {1}, uargs(c_6) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(cond) = [0] p(false) = [0] p(ge) = [1] p(minus) = [0] p(s) = [1] x1 + [1] p(true) = [1] p(cond#) = [1] x1 + [3] x3 + [7] p(ge#) = [1] x1 + [0] p(minus#) = [3] x2 + [4] p(c_1) = [0] p(c_2) = [1] x1 + [0] p(c_3) = [0] p(c_4) = [0] p(c_5) = [0] p(c_6) = [1] x1 + [0] Following rules are strictly oriented: cond#(true(),x,y) = [3] y + [8] > [3] y + [7] = c_2(minus#(x,s(y))) Following rules are (at-least) weakly oriented: minus#(x,y) = [3] y + [4] >= [3] y + [8] = c_6(cond#(ge(x,s(y)),x,y)) ge(u,0()) = [1] >= [1] = true() ge(0(),s(v)) = [1] >= [0] = false() ge(s(u),s(v)) = [1] >= [1] = ge(u,v) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** Step 1.b:5.a:3: Failure MAYBE + Considered Problem: - Strict DPs: minus#(x,y) -> c_6(cond#(ge(x,s(y)),x,y)) - Weak DPs: cond#(true(),x,y) -> c_2(minus#(x,s(y))) - Weak TRS: ge(u,0()) -> true() ge(0(),s(v)) -> false() ge(s(u),s(v)) -> ge(u,v) - Signature: {cond/3,ge/2,minus/2,cond#/3,ge#/2,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {cond#,ge#,minus#} and constructors {0,false,s,true} + Applied Processor: EmptyProcessor + Details: The problem is still open. *** Step 1.b:5.b:1: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: ge#(s(u),s(v)) -> c_5(ge#(u,v)) - Weak DPs: cond#(true(),x,y) -> minus#(x,s(y)) minus#(x,y) -> cond#(ge(x,s(y)),x,y) minus#(x,y) -> ge#(x,s(y)) - Weak TRS: ge(u,0()) -> true() ge(0(),s(v)) -> false() ge(s(u),s(v)) -> ge(u,v) - Signature: {cond/3,ge/2,minus/2,cond#/3,ge#/2,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {cond#,ge#,minus#} and constructors {0,false,s,true} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_5) = {1} Following symbols are considered usable: {cond#,ge#,minus#} TcT has computed the following interpretation: p(0) = [5] p(cond) = [1] x3 + [2] p(false) = [0] p(ge) = [2] x1 + [2] x2 + [0] p(minus) = [2] x1 + [2] p(s) = [1] x1 + [4] p(true) = [8] p(cond#) = [4] x2 + [11] p(ge#) = [4] x1 + [0] p(minus#) = [4] x1 + [11] p(c_1) = [0] p(c_2) = [2] x1 + [1] p(c_3) = [1] p(c_4) = [1] p(c_5) = [1] x1 + [14] p(c_6) = [1] x1 + [2] x2 + [0] Following rules are strictly oriented: ge#(s(u),s(v)) = [4] u + [16] > [4] u + [14] = c_5(ge#(u,v)) Following rules are (at-least) weakly oriented: cond#(true(),x,y) = [4] x + [11] >= [4] x + [11] = minus#(x,s(y)) minus#(x,y) = [4] x + [11] >= [4] x + [11] = cond#(ge(x,s(y)),x,y) minus#(x,y) = [4] x + [11] >= [4] x + [0] = ge#(x,s(y)) *** Step 1.b:5.b:2: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: cond#(true(),x,y) -> minus#(x,s(y)) ge#(s(u),s(v)) -> c_5(ge#(u,v)) minus#(x,y) -> cond#(ge(x,s(y)),x,y) minus#(x,y) -> ge#(x,s(y)) - Weak TRS: ge(u,0()) -> true() ge(0(),s(v)) -> false() ge(s(u),s(v)) -> ge(u,v) - Signature: {cond/3,ge/2,minus/2,cond#/3,ge#/2,minus#/2} / {0/0,false/0,s/1,true/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {cond#,ge#,minus#} and constructors {0,false,s,true} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),?)