/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 3 ms] (10) CpxRNTS (11) InliningProof [UPPER BOUND(ID), 977 ms] (12) CpxRNTS (13) SimplificationProof [BOTH BOUNDS(ID, ID), 3 ms] (14) CpxRNTS (15) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 3949 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 1928 ms] (22) CpxRNTS (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 96 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 2 ms] (28) CpxRNTS (29) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 337 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 154 ms] (34) CpxRNTS (35) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 248 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 74 ms] (40) CpxRNTS (41) FinalProof [FINISHED, 0 ms] (42) BOUNDS(1, n^1) (43) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (44) TRS for Loop Detection (45) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (46) BEST (47) proven lower bound (48) LowerBoundPropagationProof [FINISHED, 0 ms] (49) BOUNDS(n^1, INF) (50) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(x, 0), x, y) cond2(true, x, y) -> cond1(or(gr(x, 0), gr(y, 0)), p(x), y) cond2(false, x, y) -> cond3(gr(y, 0), x, y) cond3(true, x, y) -> cond1(or(gr(x, 0), gr(y, 0)), x, p(y)) cond3(false, x, y) -> cond1(or(gr(x, 0), gr(y, 0)), x, y) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) or(false, false) -> false or(true, x) -> true or(x, true) -> true p(0) -> 0 p(s(x)) -> x S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(x, 0), x, y) [1] cond2(true, x, y) -> cond1(or(gr(x, 0), gr(y, 0)), p(x), y) [1] cond2(false, x, y) -> cond3(gr(y, 0), x, y) [1] cond3(true, x, y) -> cond1(or(gr(x, 0), gr(y, 0)), x, p(y)) [1] cond3(false, x, y) -> cond1(or(gr(x, 0), gr(y, 0)), x, y) [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] or(false, false) -> false [1] or(true, x) -> true [1] or(x, true) -> true [1] p(0) -> 0 [1] p(s(x)) -> x [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(x, 0), x, y) [1] cond2(true, x, y) -> cond1(or(gr(x, 0), gr(y, 0)), p(x), y) [1] cond2(false, x, y) -> cond3(gr(y, 0), x, y) [1] cond3(true, x, y) -> cond1(or(gr(x, 0), gr(y, 0)), x, p(y)) [1] cond3(false, x, y) -> cond1(or(gr(x, 0), gr(y, 0)), x, y) [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] or(false, false) -> false [1] or(true, x) -> true [1] or(x, true) -> true [1] p(0) -> 0 [1] p(s(x)) -> x [1] The TRS has the following type information: cond1 :: true:false -> 0:s -> 0:s -> cond1:cond2:cond3 true :: true:false cond2 :: true:false -> 0:s -> 0:s -> cond1:cond2:cond3 gr :: 0:s -> 0:s -> true:false 0 :: 0:s or :: true:false -> true:false -> true:false p :: 0:s -> 0:s false :: true:false cond3 :: true:false -> 0:s -> 0:s -> cond1:cond2:cond3 s :: 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: cond1_3 cond2_3 cond3_3 (c) The following functions are completely defined: or_2 gr_2 p_1 Due to the following rules being added: none And the following fresh constants: const ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(x, 0), x, y) [1] cond2(true, x, y) -> cond1(or(gr(x, 0), gr(y, 0)), p(x), y) [1] cond2(false, x, y) -> cond3(gr(y, 0), x, y) [1] cond3(true, x, y) -> cond1(or(gr(x, 0), gr(y, 0)), x, p(y)) [1] cond3(false, x, y) -> cond1(or(gr(x, 0), gr(y, 0)), x, y) [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] or(false, false) -> false [1] or(true, x) -> true [1] or(x, true) -> true [1] p(0) -> 0 [1] p(s(x)) -> x [1] The TRS has the following type information: cond1 :: true:false -> 0:s -> 0:s -> cond1:cond2:cond3 true :: true:false cond2 :: true:false -> 0:s -> 0:s -> cond1:cond2:cond3 gr :: 0:s -> 0:s -> true:false 0 :: 0:s or :: true:false -> true:false -> true:false p :: 0:s -> 0:s false :: true:false cond3 :: true:false -> 0:s -> 0:s -> cond1:cond2:cond3 s :: 0:s -> 0:s const :: cond1:cond2:cond3 Rewrite Strategy: INNERMOST ---------------------------------------- (7) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond1(true, 0, y) -> cond2(false, 0, y) [2] cond1(true, s(x'), y) -> cond2(true, s(x'), y) [2] cond2(true, 0, 0) -> cond1(or(false, false), 0, 0) [4] cond2(true, 0, s(x1)) -> cond1(or(false, true), 0, s(x1)) [4] cond2(true, s(x''), 0) -> cond1(or(true, false), x'', 0) [4] cond2(true, s(x''), s(x2)) -> cond1(or(true, true), x'', s(x2)) [4] cond2(false, x, 0) -> cond3(false, x, 0) [2] cond2(false, x, s(x3)) -> cond3(true, x, s(x3)) [2] cond3(true, 0, 0) -> cond1(or(false, false), 0, 0) [4] cond3(true, 0, s(x5)) -> cond1(or(false, true), 0, x5) [4] cond3(true, s(x4), 0) -> cond1(or(true, false), s(x4), 0) [4] cond3(true, s(x4), s(x6)) -> cond1(or(true, true), s(x4), x6) [4] cond3(false, 0, 0) -> cond1(or(false, false), 0, 0) [3] cond3(false, 0, s(x8)) -> cond1(or(false, true), 0, s(x8)) [3] cond3(false, s(x7), 0) -> cond1(or(true, false), s(x7), 0) [3] cond3(false, s(x7), s(x9)) -> cond1(or(true, true), s(x7), s(x9)) [3] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] or(false, false) -> false [1] or(true, x) -> true [1] or(x, true) -> true [1] p(0) -> 0 [1] p(s(x)) -> x [1] The TRS has the following type information: cond1 :: true:false -> 0:s -> 0:s -> cond1:cond2:cond3 true :: true:false cond2 :: true:false -> 0:s -> 0:s -> cond1:cond2:cond3 gr :: 0:s -> 0:s -> true:false 0 :: 0:s or :: true:false -> true:false -> true:false p :: 0:s -> 0:s false :: true:false cond3 :: true:false -> 0:s -> 0:s -> cond1:cond2:cond3 s :: 0:s -> 0:s const :: cond1:cond2:cond3 Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: true => 1 0 => 0 false => 0 const => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z', z'') -{ 2 }-> cond2(1, 1 + x', y) :|: z' = 1 + x', z'' = y, z = 1, x' >= 0, y >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, 0, y) :|: z'' = y, z = 1, y >= 0, z' = 0 cond2(z, z', z'') -{ 2 }-> cond3(1, x, 1 + x3) :|: z' = x, z'' = 1 + x3, x >= 0, z = 0, x3 >= 0 cond2(z, z', z'') -{ 2 }-> cond3(0, x, 0) :|: z'' = 0, z' = x, x >= 0, z = 0 cond2(z, z', z'') -{ 4 }-> cond1(or(1, 1), x'', 1 + x2) :|: z' = 1 + x'', z = 1, z'' = 1 + x2, x'' >= 0, x2 >= 0 cond2(z, z', z'') -{ 4 }-> cond1(or(1, 0), x'', 0) :|: z'' = 0, z' = 1 + x'', z = 1, x'' >= 0 cond2(z, z', z'') -{ 4 }-> cond1(or(0, 1), 0, 1 + x1) :|: x1 >= 0, z = 1, z'' = 1 + x1, z' = 0 cond2(z, z', z'') -{ 4 }-> cond1(or(0, 0), 0, 0) :|: z'' = 0, z = 1, z' = 0 cond3(z, z', z'') -{ 4 }-> cond1(or(1, 1), 1 + x4, x6) :|: x4 >= 0, z = 1, z' = 1 + x4, x6 >= 0, z'' = 1 + x6 cond3(z, z', z'') -{ 3 }-> cond1(or(1, 1), 1 + x7, 1 + x9) :|: z' = 1 + x7, x7 >= 0, z = 0, x9 >= 0, z'' = 1 + x9 cond3(z, z', z'') -{ 4 }-> cond1(or(1, 0), 1 + x4, 0) :|: z'' = 0, x4 >= 0, z = 1, z' = 1 + x4 cond3(z, z', z'') -{ 3 }-> cond1(or(1, 0), 1 + x7, 0) :|: z' = 1 + x7, z'' = 0, x7 >= 0, z = 0 cond3(z, z', z'') -{ 4 }-> cond1(or(0, 1), 0, x5) :|: x5 >= 0, z = 1, z'' = 1 + x5, z' = 0 cond3(z, z', z'') -{ 3 }-> cond1(or(0, 1), 0, 1 + x8) :|: x8 >= 0, z'' = 1 + x8, z = 0, z' = 0 cond3(z, z', z'') -{ 4 }-> cond1(or(0, 0), 0, 0) :|: z'' = 0, z = 1, z' = 0 cond3(z, z', z'') -{ 3 }-> cond1(or(0, 0), 0, 0) :|: z'' = 0, z = 0, z' = 0 gr(z, z') -{ 1 }-> gr(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x gr(z, z') -{ 1 }-> 1 :|: x >= 0, z = 1 + x, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 or(z, z') -{ 1 }-> 1 :|: z' = x, z = 1, x >= 0 or(z, z') -{ 1 }-> 1 :|: x >= 0, z' = 1, z = x or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x p(z) -{ 1 }-> 0 :|: z = 0 ---------------------------------------- (11) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 or(z, z') -{ 1 }-> 1 :|: z' = x, z = 1, x >= 0 or(z, z') -{ 1 }-> 1 :|: x >= 0, z' = 1, z = x ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z', z'') -{ 2 }-> cond2(1, 1 + x', y) :|: z' = 1 + x', z'' = y, z = 1, x' >= 0, y >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, 0, y) :|: z'' = y, z = 1, y >= 0, z' = 0 cond2(z, z', z'') -{ 2 }-> cond3(1, x, 1 + x3) :|: z' = x, z'' = 1 + x3, x >= 0, z = 0, x3 >= 0 cond2(z, z', z'') -{ 2 }-> cond3(0, x, 0) :|: z'' = 0, z' = x, x >= 0, z = 0 cond2(z, z', z'') -{ 5 }-> cond1(1, x'', 0) :|: z'' = 0, z' = 1 + x'', z = 1, x'' >= 0, 0 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 5 }-> cond1(1, x'', 1 + x2) :|: z' = 1 + x'', z = 1, z'' = 1 + x2, x'' >= 0, x2 >= 0, 1 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 5 }-> cond1(1, 0, 1 + x1) :|: x1 >= 0, z = 1, z'' = 1 + x1, z' = 0, x >= 0, 1 = 1, 0 = x cond2(z, z', z'') -{ 5 }-> cond1(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 5 }-> cond1(1, 0, x5) :|: x5 >= 0, z = 1, z'' = 1 + x5, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 4 }-> cond1(1, 0, 1 + x8) :|: x8 >= 0, z'' = 1 + x8, z = 0, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 5 }-> cond1(1, 1 + x4, x6) :|: x4 >= 0, z = 1, z' = 1 + x4, x6 >= 0, z'' = 1 + x6, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 5 }-> cond1(1, 1 + x4, 0) :|: z'' = 0, x4 >= 0, z = 1, z' = 1 + x4, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + x7, 0) :|: z' = 1 + x7, z'' = 0, x7 >= 0, z = 0, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + x7, 1 + x9) :|: z' = 1 + x7, x7 >= 0, z = 0, x9 >= 0, z'' = 1 + x9, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 5 }-> cond1(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = 0 gr(z, z') -{ 1 }-> gr(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x gr(z, z') -{ 1 }-> 1 :|: x >= 0, z = 1 + x, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 or(z, z') -{ 1 }-> 1 :|: z' = x, z = 1, x >= 0 or(z, z') -{ 1 }-> 1 :|: x >= 0, z' = 1, z = x or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x p(z) -{ 1 }-> 0 :|: z = 0 ---------------------------------------- (13) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z', z'') -{ 2 }-> cond2(1, 1 + (z' - 1), z'') :|: z = 1, z' - 1 >= 0, z'' >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond2(z, z', z'') -{ 2 }-> cond3(1, z', 1 + (z'' - 1)) :|: z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 2 }-> cond3(0, z', 0) :|: z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 5 }-> cond1(1, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond2(z, z', z'') -{ 5 }-> cond1(1, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, 0 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 5 }-> cond1(1, z' - 1, 1 + (z'' - 1)) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 5 }-> cond1(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 5 }-> cond1(1, 0, z'' - 1) :|: z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 4 }-> cond1(1, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 5 }-> cond1(1, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 1, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 5 }-> cond1(1, 1 + (z' - 1), z'' - 1) :|: z' - 1 >= 0, z = 1, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z = 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 5 }-> cond1(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 or(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 or(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 ---------------------------------------- (15) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { cond2, cond1, cond3 } { p } { gr } { or } ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z', z'') -{ 2 }-> cond2(1, 1 + (z' - 1), z'') :|: z = 1, z' - 1 >= 0, z'' >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond2(z, z', z'') -{ 2 }-> cond3(1, z', 1 + (z'' - 1)) :|: z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 2 }-> cond3(0, z', 0) :|: z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 5 }-> cond1(1, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond2(z, z', z'') -{ 5 }-> cond1(1, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, 0 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 5 }-> cond1(1, z' - 1, 1 + (z'' - 1)) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 5 }-> cond1(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 5 }-> cond1(1, 0, z'' - 1) :|: z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 4 }-> cond1(1, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 5 }-> cond1(1, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 1, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 5 }-> cond1(1, 1 + (z' - 1), z'' - 1) :|: z' - 1 >= 0, z = 1, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z = 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 5 }-> cond1(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 or(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 or(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {cond2,cond1,cond3}, {p}, {gr}, {or} ---------------------------------------- (17) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z', z'') -{ 2 }-> cond2(1, 1 + (z' - 1), z'') :|: z = 1, z' - 1 >= 0, z'' >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond2(z, z', z'') -{ 2 }-> cond3(1, z', 1 + (z'' - 1)) :|: z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 2 }-> cond3(0, z', 0) :|: z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 5 }-> cond1(1, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond2(z, z', z'') -{ 5 }-> cond1(1, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, 0 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 5 }-> cond1(1, z' - 1, 1 + (z'' - 1)) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 5 }-> cond1(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 5 }-> cond1(1, 0, z'' - 1) :|: z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 4 }-> cond1(1, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 5 }-> cond1(1, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 1, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 5 }-> cond1(1, 1 + (z' - 1), z'' - 1) :|: z' - 1 >= 0, z = 1, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z = 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 5 }-> cond1(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 or(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 or(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {cond2,cond1,cond3}, {p}, {gr}, {or} ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: cond2 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 Computed SIZE bound using CoFloCo for: cond1 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 Computed SIZE bound using CoFloCo for: cond3 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z', z'') -{ 2 }-> cond2(1, 1 + (z' - 1), z'') :|: z = 1, z' - 1 >= 0, z'' >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond2(z, z', z'') -{ 2 }-> cond3(1, z', 1 + (z'' - 1)) :|: z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 2 }-> cond3(0, z', 0) :|: z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 5 }-> cond1(1, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond2(z, z', z'') -{ 5 }-> cond1(1, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, 0 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 5 }-> cond1(1, z' - 1, 1 + (z'' - 1)) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 5 }-> cond1(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 5 }-> cond1(1, 0, z'' - 1) :|: z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 4 }-> cond1(1, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 5 }-> cond1(1, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 1, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 5 }-> cond1(1, 1 + (z' - 1), z'' - 1) :|: z' - 1 >= 0, z = 1, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z = 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 5 }-> cond1(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 or(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 or(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {cond2,cond1,cond3}, {p}, {gr}, {or} Previous analysis results are: cond2: runtime: ?, size: O(1) [0] cond1: runtime: ?, size: O(1) [0] cond3: runtime: ?, size: O(1) [0] ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: cond2 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 48 + 7*z' + 9*z'' Computed RUNTIME bound using CoFloCo for: cond1 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 50 + 7*z' + 9*z'' Computed RUNTIME bound using CoFloCo for: cond3 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 55 + 7*z' + 9*z'' ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z', z'') -{ 2 }-> cond2(1, 1 + (z' - 1), z'') :|: z = 1, z' - 1 >= 0, z'' >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond2(z, z', z'') -{ 2 }-> cond3(1, z', 1 + (z'' - 1)) :|: z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 2 }-> cond3(0, z', 0) :|: z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 5 }-> cond1(1, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond2(z, z', z'') -{ 5 }-> cond1(1, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, 0 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 5 }-> cond1(1, z' - 1, 1 + (z'' - 1)) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 5 }-> cond1(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 5 }-> cond1(1, 0, z'' - 1) :|: z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 4 }-> cond1(1, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 5 }-> cond1(1, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 1, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 5 }-> cond1(1, 1 + (z' - 1), z'' - 1) :|: z' - 1 >= 0, z = 1, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z = 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 5 }-> cond1(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 or(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 or(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {gr}, {or} Previous analysis results are: cond2: runtime: O(n^1) [48 + 7*z' + 9*z''], size: O(1) [0] cond1: runtime: O(n^1) [50 + 7*z' + 9*z''], size: O(1) [0] cond3: runtime: O(n^1) [55 + 7*z' + 9*z''], size: O(1) [0] ---------------------------------------- (23) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z', z'') -{ 50 + 9*z'' }-> s :|: s >= 0, s <= 0, z = 1, z'' >= 0, z' = 0 cond1(z, z', z'') -{ 50 + 7*z' + 9*z'' }-> s' :|: s' >= 0, s' <= 0, z = 1, z' - 1 >= 0, z'' >= 0 cond2(z, z', z'') -{ 57 + 7*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 57 + 7*z' + 9*z'' }-> s1 :|: s1 >= 0, s1 <= 0, z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 55 }-> s2 :|: s2 >= 0, s2 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond2(z, z', z'') -{ 55 + 9*z'' }-> s3 :|: s3 >= 0, s3 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond2(z, z', z'') -{ 48 + 7*z' }-> s4 :|: s4 >= 0, s4 <= 0, z'' = 0, z = 1, z' - 1 >= 0, 0 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 48 + 7*z' + 9*z'' }-> s5 :|: s5 >= 0, s5 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 }-> s10 :|: s10 >= 0, s10 <= 0, z'' = 0, z = 0, z' = 0, 0 = 0 cond3(z, z', z'') -{ 54 + 9*z'' }-> s11 :|: s11 >= 0, s11 <= 0, z'' - 1 >= 0, z = 0, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 54 + 7*z' }-> s12 :|: s12 >= 0, s12 <= 0, z'' = 0, z' - 1 >= 0, z = 0, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 + 7*z' + 9*z'' }-> s13 :|: s13 >= 0, s13 <= 0, z' - 1 >= 0, z = 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 55 }-> s6 :|: s6 >= 0, s6 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 46 + 9*z'' }-> s7 :|: s7 >= 0, s7 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 55 + 7*z' }-> s8 :|: s8 >= 0, s8 <= 0, z'' = 0, z' - 1 >= 0, z = 1, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 46 + 7*z' + 9*z'' }-> s9 :|: s9 >= 0, s9 <= 0, z' - 1 >= 0, z = 1, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 or(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 or(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {gr}, {or} Previous analysis results are: cond2: runtime: O(n^1) [48 + 7*z' + 9*z''], size: O(1) [0] cond1: runtime: O(n^1) [50 + 7*z' + 9*z''], size: O(1) [0] cond3: runtime: O(n^1) [55 + 7*z' + 9*z''], size: O(1) [0] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: p after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z', z'') -{ 50 + 9*z'' }-> s :|: s >= 0, s <= 0, z = 1, z'' >= 0, z' = 0 cond1(z, z', z'') -{ 50 + 7*z' + 9*z'' }-> s' :|: s' >= 0, s' <= 0, z = 1, z' - 1 >= 0, z'' >= 0 cond2(z, z', z'') -{ 57 + 7*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 57 + 7*z' + 9*z'' }-> s1 :|: s1 >= 0, s1 <= 0, z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 55 }-> s2 :|: s2 >= 0, s2 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond2(z, z', z'') -{ 55 + 9*z'' }-> s3 :|: s3 >= 0, s3 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond2(z, z', z'') -{ 48 + 7*z' }-> s4 :|: s4 >= 0, s4 <= 0, z'' = 0, z = 1, z' - 1 >= 0, 0 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 48 + 7*z' + 9*z'' }-> s5 :|: s5 >= 0, s5 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 }-> s10 :|: s10 >= 0, s10 <= 0, z'' = 0, z = 0, z' = 0, 0 = 0 cond3(z, z', z'') -{ 54 + 9*z'' }-> s11 :|: s11 >= 0, s11 <= 0, z'' - 1 >= 0, z = 0, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 54 + 7*z' }-> s12 :|: s12 >= 0, s12 <= 0, z'' = 0, z' - 1 >= 0, z = 0, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 + 7*z' + 9*z'' }-> s13 :|: s13 >= 0, s13 <= 0, z' - 1 >= 0, z = 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 55 }-> s6 :|: s6 >= 0, s6 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 46 + 9*z'' }-> s7 :|: s7 >= 0, s7 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 55 + 7*z' }-> s8 :|: s8 >= 0, s8 <= 0, z'' = 0, z' - 1 >= 0, z = 1, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 46 + 7*z' + 9*z'' }-> s9 :|: s9 >= 0, s9 <= 0, z' - 1 >= 0, z = 1, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 or(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 or(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {gr}, {or} Previous analysis results are: cond2: runtime: O(n^1) [48 + 7*z' + 9*z''], size: O(1) [0] cond1: runtime: O(n^1) [50 + 7*z' + 9*z''], size: O(1) [0] cond3: runtime: O(n^1) [55 + 7*z' + 9*z''], size: O(1) [0] p: runtime: ?, size: O(n^1) [z] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: p after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z', z'') -{ 50 + 9*z'' }-> s :|: s >= 0, s <= 0, z = 1, z'' >= 0, z' = 0 cond1(z, z', z'') -{ 50 + 7*z' + 9*z'' }-> s' :|: s' >= 0, s' <= 0, z = 1, z' - 1 >= 0, z'' >= 0 cond2(z, z', z'') -{ 57 + 7*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 57 + 7*z' + 9*z'' }-> s1 :|: s1 >= 0, s1 <= 0, z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 55 }-> s2 :|: s2 >= 0, s2 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond2(z, z', z'') -{ 55 + 9*z'' }-> s3 :|: s3 >= 0, s3 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond2(z, z', z'') -{ 48 + 7*z' }-> s4 :|: s4 >= 0, s4 <= 0, z'' = 0, z = 1, z' - 1 >= 0, 0 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 48 + 7*z' + 9*z'' }-> s5 :|: s5 >= 0, s5 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 }-> s10 :|: s10 >= 0, s10 <= 0, z'' = 0, z = 0, z' = 0, 0 = 0 cond3(z, z', z'') -{ 54 + 9*z'' }-> s11 :|: s11 >= 0, s11 <= 0, z'' - 1 >= 0, z = 0, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 54 + 7*z' }-> s12 :|: s12 >= 0, s12 <= 0, z'' = 0, z' - 1 >= 0, z = 0, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 + 7*z' + 9*z'' }-> s13 :|: s13 >= 0, s13 <= 0, z' - 1 >= 0, z = 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 55 }-> s6 :|: s6 >= 0, s6 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 46 + 9*z'' }-> s7 :|: s7 >= 0, s7 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 55 + 7*z' }-> s8 :|: s8 >= 0, s8 <= 0, z'' = 0, z' - 1 >= 0, z = 1, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 46 + 7*z' + 9*z'' }-> s9 :|: s9 >= 0, s9 <= 0, z' - 1 >= 0, z = 1, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 or(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 or(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {gr}, {or} Previous analysis results are: cond2: runtime: O(n^1) [48 + 7*z' + 9*z''], size: O(1) [0] cond1: runtime: O(n^1) [50 + 7*z' + 9*z''], size: O(1) [0] cond3: runtime: O(n^1) [55 + 7*z' + 9*z''], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (29) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z', z'') -{ 50 + 9*z'' }-> s :|: s >= 0, s <= 0, z = 1, z'' >= 0, z' = 0 cond1(z, z', z'') -{ 50 + 7*z' + 9*z'' }-> s' :|: s' >= 0, s' <= 0, z = 1, z' - 1 >= 0, z'' >= 0 cond2(z, z', z'') -{ 57 + 7*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 57 + 7*z' + 9*z'' }-> s1 :|: s1 >= 0, s1 <= 0, z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 55 }-> s2 :|: s2 >= 0, s2 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond2(z, z', z'') -{ 55 + 9*z'' }-> s3 :|: s3 >= 0, s3 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond2(z, z', z'') -{ 48 + 7*z' }-> s4 :|: s4 >= 0, s4 <= 0, z'' = 0, z = 1, z' - 1 >= 0, 0 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 48 + 7*z' + 9*z'' }-> s5 :|: s5 >= 0, s5 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 }-> s10 :|: s10 >= 0, s10 <= 0, z'' = 0, z = 0, z' = 0, 0 = 0 cond3(z, z', z'') -{ 54 + 9*z'' }-> s11 :|: s11 >= 0, s11 <= 0, z'' - 1 >= 0, z = 0, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 54 + 7*z' }-> s12 :|: s12 >= 0, s12 <= 0, z'' = 0, z' - 1 >= 0, z = 0, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 + 7*z' + 9*z'' }-> s13 :|: s13 >= 0, s13 <= 0, z' - 1 >= 0, z = 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 55 }-> s6 :|: s6 >= 0, s6 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 46 + 9*z'' }-> s7 :|: s7 >= 0, s7 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 55 + 7*z' }-> s8 :|: s8 >= 0, s8 <= 0, z'' = 0, z' - 1 >= 0, z = 1, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 46 + 7*z' + 9*z'' }-> s9 :|: s9 >= 0, s9 <= 0, z' - 1 >= 0, z = 1, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 or(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 or(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {gr}, {or} Previous analysis results are: cond2: runtime: O(n^1) [48 + 7*z' + 9*z''], size: O(1) [0] cond1: runtime: O(n^1) [50 + 7*z' + 9*z''], size: O(1) [0] cond3: runtime: O(n^1) [55 + 7*z' + 9*z''], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: gr after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z', z'') -{ 50 + 9*z'' }-> s :|: s >= 0, s <= 0, z = 1, z'' >= 0, z' = 0 cond1(z, z', z'') -{ 50 + 7*z' + 9*z'' }-> s' :|: s' >= 0, s' <= 0, z = 1, z' - 1 >= 0, z'' >= 0 cond2(z, z', z'') -{ 57 + 7*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 57 + 7*z' + 9*z'' }-> s1 :|: s1 >= 0, s1 <= 0, z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 55 }-> s2 :|: s2 >= 0, s2 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond2(z, z', z'') -{ 55 + 9*z'' }-> s3 :|: s3 >= 0, s3 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond2(z, z', z'') -{ 48 + 7*z' }-> s4 :|: s4 >= 0, s4 <= 0, z'' = 0, z = 1, z' - 1 >= 0, 0 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 48 + 7*z' + 9*z'' }-> s5 :|: s5 >= 0, s5 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 }-> s10 :|: s10 >= 0, s10 <= 0, z'' = 0, z = 0, z' = 0, 0 = 0 cond3(z, z', z'') -{ 54 + 9*z'' }-> s11 :|: s11 >= 0, s11 <= 0, z'' - 1 >= 0, z = 0, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 54 + 7*z' }-> s12 :|: s12 >= 0, s12 <= 0, z'' = 0, z' - 1 >= 0, z = 0, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 + 7*z' + 9*z'' }-> s13 :|: s13 >= 0, s13 <= 0, z' - 1 >= 0, z = 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 55 }-> s6 :|: s6 >= 0, s6 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 46 + 9*z'' }-> s7 :|: s7 >= 0, s7 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 55 + 7*z' }-> s8 :|: s8 >= 0, s8 <= 0, z'' = 0, z' - 1 >= 0, z = 1, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 46 + 7*z' + 9*z'' }-> s9 :|: s9 >= 0, s9 <= 0, z' - 1 >= 0, z = 1, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 or(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 or(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {gr}, {or} Previous analysis results are: cond2: runtime: O(n^1) [48 + 7*z' + 9*z''], size: O(1) [0] cond1: runtime: O(n^1) [50 + 7*z' + 9*z''], size: O(1) [0] cond3: runtime: O(n^1) [55 + 7*z' + 9*z''], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: ?, size: O(1) [1] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: gr after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z' ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z', z'') -{ 50 + 9*z'' }-> s :|: s >= 0, s <= 0, z = 1, z'' >= 0, z' = 0 cond1(z, z', z'') -{ 50 + 7*z' + 9*z'' }-> s' :|: s' >= 0, s' <= 0, z = 1, z' - 1 >= 0, z'' >= 0 cond2(z, z', z'') -{ 57 + 7*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 57 + 7*z' + 9*z'' }-> s1 :|: s1 >= 0, s1 <= 0, z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 55 }-> s2 :|: s2 >= 0, s2 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond2(z, z', z'') -{ 55 + 9*z'' }-> s3 :|: s3 >= 0, s3 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond2(z, z', z'') -{ 48 + 7*z' }-> s4 :|: s4 >= 0, s4 <= 0, z'' = 0, z = 1, z' - 1 >= 0, 0 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 48 + 7*z' + 9*z'' }-> s5 :|: s5 >= 0, s5 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 }-> s10 :|: s10 >= 0, s10 <= 0, z'' = 0, z = 0, z' = 0, 0 = 0 cond3(z, z', z'') -{ 54 + 9*z'' }-> s11 :|: s11 >= 0, s11 <= 0, z'' - 1 >= 0, z = 0, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 54 + 7*z' }-> s12 :|: s12 >= 0, s12 <= 0, z'' = 0, z' - 1 >= 0, z = 0, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 + 7*z' + 9*z'' }-> s13 :|: s13 >= 0, s13 <= 0, z' - 1 >= 0, z = 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 55 }-> s6 :|: s6 >= 0, s6 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 46 + 9*z'' }-> s7 :|: s7 >= 0, s7 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 55 + 7*z' }-> s8 :|: s8 >= 0, s8 <= 0, z'' = 0, z' - 1 >= 0, z = 1, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 46 + 7*z' + 9*z'' }-> s9 :|: s9 >= 0, s9 <= 0, z' - 1 >= 0, z = 1, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 or(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 or(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {or} Previous analysis results are: cond2: runtime: O(n^1) [48 + 7*z' + 9*z''], size: O(1) [0] cond1: runtime: O(n^1) [50 + 7*z' + 9*z''], size: O(1) [0] cond3: runtime: O(n^1) [55 + 7*z' + 9*z''], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: O(n^1) [2 + z'], size: O(1) [1] ---------------------------------------- (35) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z', z'') -{ 50 + 9*z'' }-> s :|: s >= 0, s <= 0, z = 1, z'' >= 0, z' = 0 cond1(z, z', z'') -{ 50 + 7*z' + 9*z'' }-> s' :|: s' >= 0, s' <= 0, z = 1, z' - 1 >= 0, z'' >= 0 cond2(z, z', z'') -{ 57 + 7*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 57 + 7*z' + 9*z'' }-> s1 :|: s1 >= 0, s1 <= 0, z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 55 }-> s2 :|: s2 >= 0, s2 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond2(z, z', z'') -{ 55 + 9*z'' }-> s3 :|: s3 >= 0, s3 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond2(z, z', z'') -{ 48 + 7*z' }-> s4 :|: s4 >= 0, s4 <= 0, z'' = 0, z = 1, z' - 1 >= 0, 0 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 48 + 7*z' + 9*z'' }-> s5 :|: s5 >= 0, s5 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 }-> s10 :|: s10 >= 0, s10 <= 0, z'' = 0, z = 0, z' = 0, 0 = 0 cond3(z, z', z'') -{ 54 + 9*z'' }-> s11 :|: s11 >= 0, s11 <= 0, z'' - 1 >= 0, z = 0, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 54 + 7*z' }-> s12 :|: s12 >= 0, s12 <= 0, z'' = 0, z' - 1 >= 0, z = 0, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 + 7*z' + 9*z'' }-> s13 :|: s13 >= 0, s13 <= 0, z' - 1 >= 0, z = 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 55 }-> s6 :|: s6 >= 0, s6 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 46 + 9*z'' }-> s7 :|: s7 >= 0, s7 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 55 + 7*z' }-> s8 :|: s8 >= 0, s8 <= 0, z'' = 0, z' - 1 >= 0, z = 1, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 46 + 7*z' + 9*z'' }-> s9 :|: s9 >= 0, s9 <= 0, z' - 1 >= 0, z = 1, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 gr(z, z') -{ 2 + z' }-> s14 :|: s14 >= 0, s14 <= 1, z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 or(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 or(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {or} Previous analysis results are: cond2: runtime: O(n^1) [48 + 7*z' + 9*z''], size: O(1) [0] cond1: runtime: O(n^1) [50 + 7*z' + 9*z''], size: O(1) [0] cond3: runtime: O(n^1) [55 + 7*z' + 9*z''], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: O(n^1) [2 + z'], size: O(1) [1] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: or after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z', z'') -{ 50 + 9*z'' }-> s :|: s >= 0, s <= 0, z = 1, z'' >= 0, z' = 0 cond1(z, z', z'') -{ 50 + 7*z' + 9*z'' }-> s' :|: s' >= 0, s' <= 0, z = 1, z' - 1 >= 0, z'' >= 0 cond2(z, z', z'') -{ 57 + 7*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 57 + 7*z' + 9*z'' }-> s1 :|: s1 >= 0, s1 <= 0, z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 55 }-> s2 :|: s2 >= 0, s2 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond2(z, z', z'') -{ 55 + 9*z'' }-> s3 :|: s3 >= 0, s3 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond2(z, z', z'') -{ 48 + 7*z' }-> s4 :|: s4 >= 0, s4 <= 0, z'' = 0, z = 1, z' - 1 >= 0, 0 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 48 + 7*z' + 9*z'' }-> s5 :|: s5 >= 0, s5 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 }-> s10 :|: s10 >= 0, s10 <= 0, z'' = 0, z = 0, z' = 0, 0 = 0 cond3(z, z', z'') -{ 54 + 9*z'' }-> s11 :|: s11 >= 0, s11 <= 0, z'' - 1 >= 0, z = 0, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 54 + 7*z' }-> s12 :|: s12 >= 0, s12 <= 0, z'' = 0, z' - 1 >= 0, z = 0, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 + 7*z' + 9*z'' }-> s13 :|: s13 >= 0, s13 <= 0, z' - 1 >= 0, z = 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 55 }-> s6 :|: s6 >= 0, s6 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 46 + 9*z'' }-> s7 :|: s7 >= 0, s7 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 55 + 7*z' }-> s8 :|: s8 >= 0, s8 <= 0, z'' = 0, z' - 1 >= 0, z = 1, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 46 + 7*z' + 9*z'' }-> s9 :|: s9 >= 0, s9 <= 0, z' - 1 >= 0, z = 1, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 gr(z, z') -{ 2 + z' }-> s14 :|: s14 >= 0, s14 <= 1, z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 or(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 or(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {or} Previous analysis results are: cond2: runtime: O(n^1) [48 + 7*z' + 9*z''], size: O(1) [0] cond1: runtime: O(n^1) [50 + 7*z' + 9*z''], size: O(1) [0] cond3: runtime: O(n^1) [55 + 7*z' + 9*z''], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: O(n^1) [2 + z'], size: O(1) [1] or: runtime: ?, size: O(1) [1] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: or after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z', z'') -{ 50 + 9*z'' }-> s :|: s >= 0, s <= 0, z = 1, z'' >= 0, z' = 0 cond1(z, z', z'') -{ 50 + 7*z' + 9*z'' }-> s' :|: s' >= 0, s' <= 0, z = 1, z' - 1 >= 0, z'' >= 0 cond2(z, z', z'') -{ 57 + 7*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 57 + 7*z' + 9*z'' }-> s1 :|: s1 >= 0, s1 <= 0, z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 55 }-> s2 :|: s2 >= 0, s2 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond2(z, z', z'') -{ 55 + 9*z'' }-> s3 :|: s3 >= 0, s3 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond2(z, z', z'') -{ 48 + 7*z' }-> s4 :|: s4 >= 0, s4 <= 0, z'' = 0, z = 1, z' - 1 >= 0, 0 = x, 1 = 1, x >= 0 cond2(z, z', z'') -{ 48 + 7*z' + 9*z'' }-> s5 :|: s5 >= 0, s5 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 }-> s10 :|: s10 >= 0, s10 <= 0, z'' = 0, z = 0, z' = 0, 0 = 0 cond3(z, z', z'') -{ 54 + 9*z'' }-> s11 :|: s11 >= 0, s11 <= 0, z'' - 1 >= 0, z = 0, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 54 + 7*z' }-> s12 :|: s12 >= 0, s12 <= 0, z'' = 0, z' - 1 >= 0, z = 0, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 54 + 7*z' + 9*z'' }-> s13 :|: s13 >= 0, s13 <= 0, z' - 1 >= 0, z = 0, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 55 }-> s6 :|: s6 >= 0, s6 <= 0, z'' = 0, z = 1, z' = 0, 0 = 0 cond3(z, z', z'') -{ 46 + 9*z'' }-> s7 :|: s7 >= 0, s7 <= 0, z'' - 1 >= 0, z = 1, z' = 0, x >= 0, 1 = 1, 0 = x cond3(z, z', z'') -{ 55 + 7*z' }-> s8 :|: s8 >= 0, s8 <= 0, z'' = 0, z' - 1 >= 0, z = 1, 0 = x, 1 = 1, x >= 0 cond3(z, z', z'') -{ 46 + 7*z' + 9*z'' }-> s9 :|: s9 >= 0, s9 <= 0, z' - 1 >= 0, z = 1, z'' - 1 >= 0, 1 = x, 1 = 1, x >= 0 gr(z, z') -{ 2 + z' }-> s14 :|: s14 >= 0, s14 <= 1, z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 or(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 or(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 or(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: Previous analysis results are: cond2: runtime: O(n^1) [48 + 7*z' + 9*z''], size: O(1) [0] cond1: runtime: O(n^1) [50 + 7*z' + 9*z''], size: O(1) [0] cond3: runtime: O(n^1) [55 + 7*z' + 9*z''], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: O(n^1) [2 + z'], size: O(1) [1] or: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (41) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (42) BOUNDS(1, n^1) ---------------------------------------- (43) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (44) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(x, 0), x, y) cond2(true, x, y) -> cond1(or(gr(x, 0), gr(y, 0)), p(x), y) cond2(false, x, y) -> cond3(gr(y, 0), x, y) cond3(true, x, y) -> cond1(or(gr(x, 0), gr(y, 0)), x, p(y)) cond3(false, x, y) -> cond1(or(gr(x, 0), gr(y, 0)), x, y) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) or(false, false) -> false or(true, x) -> true or(x, true) -> true p(0) -> 0 p(s(x)) -> x S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (45) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence gr(s(x), s(y)) ->^+ gr(x, y) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x / s(x), y / s(y)]. The result substitution is [ ]. ---------------------------------------- (46) Complex Obligation (BEST) ---------------------------------------- (47) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(x, 0), x, y) cond2(true, x, y) -> cond1(or(gr(x, 0), gr(y, 0)), p(x), y) cond2(false, x, y) -> cond3(gr(y, 0), x, y) cond3(true, x, y) -> cond1(or(gr(x, 0), gr(y, 0)), x, p(y)) cond3(false, x, y) -> cond1(or(gr(x, 0), gr(y, 0)), x, y) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) or(false, false) -> false or(true, x) -> true or(x, true) -> true p(0) -> 0 p(s(x)) -> x S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (48) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (49) BOUNDS(n^1, INF) ---------------------------------------- (50) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(x, 0), x, y) cond2(true, x, y) -> cond1(or(gr(x, 0), gr(y, 0)), p(x), y) cond2(false, x, y) -> cond3(gr(y, 0), x, y) cond3(true, x, y) -> cond1(or(gr(x, 0), gr(y, 0)), x, p(y)) cond3(false, x, y) -> cond1(or(gr(x, 0), gr(y, 0)), x, y) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) or(false, false) -> false or(true, x) -> true or(x, true) -> true p(0) -> 0 p(s(x)) -> x S is empty. Rewrite Strategy: INNERMOST