/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 7 ms] (6) CpxTypedWeightedCompleteTrs (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (10) CpxRNTS (11) InliningProof [UPPER BOUND(ID), 613 ms] (12) CpxRNTS (13) SimplificationProof [BOTH BOUNDS(ID, ID), 2 ms] (14) CpxRNTS (15) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 240 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 76 ms] (22) CpxRNTS (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 109 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 53 ms] (28) CpxRNTS (29) ResultPropagationProof [UPPER BOUND(ID), 1 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 301 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 158 ms] (34) CpxRNTS (35) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 3275 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 1478 ms] (40) CpxRNTS (41) FinalProof [FINISHED, 0 ms] (42) BOUNDS(1, n^1) (43) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (44) CpxTRS (45) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (46) typed CpxTrs (47) OrderProof [LOWER BOUND(ID), 0 ms] (48) typed CpxTrs (49) RewriteLemmaProof [LOWER BOUND(ID), 283 ms] (50) BEST (51) proven lower bound (52) LowerBoundPropagationProof [FINISHED, 0 ms] (53) BOUNDS(n^1, INF) (54) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(x, y), x, y) cond2(true, x, y) -> cond3(gr(x, 0), x, y) cond2(false, x, y) -> cond4(gr(y, 0), x, y) cond3(true, x, y) -> cond3(gr(x, 0), p(x), y) cond3(false, x, y) -> cond1(and(gr(x, 0), gr(y, 0)), x, y) cond4(true, x, y) -> cond4(gr(y, 0), x, p(y)) cond4(false, x, y) -> cond1(and(gr(x, 0), gr(y, 0)), x, y) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) and(true, true) -> true and(false, x) -> false and(x, false) -> false p(0) -> 0 p(s(x)) -> x S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(x, y), x, y) [1] cond2(true, x, y) -> cond3(gr(x, 0), x, y) [1] cond2(false, x, y) -> cond4(gr(y, 0), x, y) [1] cond3(true, x, y) -> cond3(gr(x, 0), p(x), y) [1] cond3(false, x, y) -> cond1(and(gr(x, 0), gr(y, 0)), x, y) [1] cond4(true, x, y) -> cond4(gr(y, 0), x, p(y)) [1] cond4(false, x, y) -> cond1(and(gr(x, 0), gr(y, 0)), x, y) [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] and(true, true) -> true [1] and(false, x) -> false [1] and(x, false) -> false [1] p(0) -> 0 [1] p(s(x)) -> x [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(x, y), x, y) [1] cond2(true, x, y) -> cond3(gr(x, 0), x, y) [1] cond2(false, x, y) -> cond4(gr(y, 0), x, y) [1] cond3(true, x, y) -> cond3(gr(x, 0), p(x), y) [1] cond3(false, x, y) -> cond1(and(gr(x, 0), gr(y, 0)), x, y) [1] cond4(true, x, y) -> cond4(gr(y, 0), x, p(y)) [1] cond4(false, x, y) -> cond1(and(gr(x, 0), gr(y, 0)), x, y) [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] and(true, true) -> true [1] and(false, x) -> false [1] and(x, false) -> false [1] p(0) -> 0 [1] p(s(x)) -> x [1] The TRS has the following type information: cond1 :: true:false -> 0:s -> 0:s -> cond1:cond2:cond3:cond4 true :: true:false cond2 :: true:false -> 0:s -> 0:s -> cond1:cond2:cond3:cond4 gr :: 0:s -> 0:s -> true:false cond3 :: true:false -> 0:s -> 0:s -> cond1:cond2:cond3:cond4 0 :: 0:s false :: true:false cond4 :: true:false -> 0:s -> 0:s -> cond1:cond2:cond3:cond4 p :: 0:s -> 0:s and :: true:false -> true:false -> true:false s :: 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: cond1_3 cond2_3 cond3_3 cond4_3 (c) The following functions are completely defined: and_2 gr_2 p_1 Due to the following rules being added: none And the following fresh constants: const ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(x, y), x, y) [1] cond2(true, x, y) -> cond3(gr(x, 0), x, y) [1] cond2(false, x, y) -> cond4(gr(y, 0), x, y) [1] cond3(true, x, y) -> cond3(gr(x, 0), p(x), y) [1] cond3(false, x, y) -> cond1(and(gr(x, 0), gr(y, 0)), x, y) [1] cond4(true, x, y) -> cond4(gr(y, 0), x, p(y)) [1] cond4(false, x, y) -> cond1(and(gr(x, 0), gr(y, 0)), x, y) [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] and(true, true) -> true [1] and(false, x) -> false [1] and(x, false) -> false [1] p(0) -> 0 [1] p(s(x)) -> x [1] The TRS has the following type information: cond1 :: true:false -> 0:s -> 0:s -> cond1:cond2:cond3:cond4 true :: true:false cond2 :: true:false -> 0:s -> 0:s -> cond1:cond2:cond3:cond4 gr :: 0:s -> 0:s -> true:false cond3 :: true:false -> 0:s -> 0:s -> cond1:cond2:cond3:cond4 0 :: 0:s false :: true:false cond4 :: true:false -> 0:s -> 0:s -> cond1:cond2:cond3:cond4 p :: 0:s -> 0:s and :: true:false -> true:false -> true:false s :: 0:s -> 0:s const :: cond1:cond2:cond3:cond4 Rewrite Strategy: INNERMOST ---------------------------------------- (7) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond1(true, 0, y) -> cond2(false, 0, y) [2] cond1(true, s(x'), 0) -> cond2(true, s(x'), 0) [2] cond1(true, s(x''), s(y')) -> cond2(gr(x'', y'), s(x''), s(y')) [2] cond2(true, 0, y) -> cond3(false, 0, y) [2] cond2(true, s(x1), y) -> cond3(true, s(x1), y) [2] cond2(false, x, 0) -> cond4(false, x, 0) [2] cond2(false, x, s(x2)) -> cond4(true, x, s(x2)) [2] cond3(true, 0, y) -> cond3(false, 0, y) [3] cond3(true, s(x3), y) -> cond3(true, x3, y) [3] cond3(false, 0, 0) -> cond1(and(false, false), 0, 0) [3] cond3(false, 0, s(x5)) -> cond1(and(false, true), 0, s(x5)) [3] cond3(false, s(x4), 0) -> cond1(and(true, false), s(x4), 0) [3] cond3(false, s(x4), s(x6)) -> cond1(and(true, true), s(x4), s(x6)) [3] cond4(true, x, 0) -> cond4(false, x, 0) [3] cond4(true, x, s(x7)) -> cond4(true, x, x7) [3] cond4(false, 0, 0) -> cond1(and(false, false), 0, 0) [3] cond4(false, 0, s(x9)) -> cond1(and(false, true), 0, s(x9)) [3] cond4(false, s(x8), 0) -> cond1(and(true, false), s(x8), 0) [3] cond4(false, s(x8), s(x10)) -> cond1(and(true, true), s(x8), s(x10)) [3] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] and(true, true) -> true [1] and(false, x) -> false [1] and(x, false) -> false [1] p(0) -> 0 [1] p(s(x)) -> x [1] The TRS has the following type information: cond1 :: true:false -> 0:s -> 0:s -> cond1:cond2:cond3:cond4 true :: true:false cond2 :: true:false -> 0:s -> 0:s -> cond1:cond2:cond3:cond4 gr :: 0:s -> 0:s -> true:false cond3 :: true:false -> 0:s -> 0:s -> cond1:cond2:cond3:cond4 0 :: 0:s false :: true:false cond4 :: true:false -> 0:s -> 0:s -> cond1:cond2:cond3:cond4 p :: 0:s -> 0:s and :: true:false -> true:false -> true:false s :: 0:s -> 0:s const :: cond1:cond2:cond3:cond4 Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: true => 1 0 => 0 false => 0 const => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: x >= 0, z = x, z' = 0 cond1(z, z', z'') -{ 2 }-> cond2(gr(x'', y'), 1 + x'', 1 + y') :|: z' = 1 + x'', z = 1, y' >= 0, x'' >= 0, z'' = 1 + y' cond1(z, z', z'') -{ 2 }-> cond2(1, 1 + x', 0) :|: z'' = 0, z' = 1 + x', z = 1, x' >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, 0, y) :|: z'' = y, z = 1, y >= 0, z' = 0 cond2(z, z', z'') -{ 2 }-> cond4(1, x, 1 + x2) :|: z' = x, x >= 0, z'' = 1 + x2, z = 0, x2 >= 0 cond2(z, z', z'') -{ 2 }-> cond4(0, x, 0) :|: z'' = 0, z' = x, x >= 0, z = 0 cond2(z, z', z'') -{ 2 }-> cond3(1, 1 + x1, y) :|: x1 >= 0, z'' = y, z = 1, y >= 0, z' = 1 + x1 cond2(z, z', z'') -{ 2 }-> cond3(0, 0, y) :|: z'' = y, z = 1, y >= 0, z' = 0 cond3(z, z', z'') -{ 3 }-> cond3(1, x3, y) :|: z'' = y, z = 1, z' = 1 + x3, y >= 0, x3 >= 0 cond3(z, z', z'') -{ 3 }-> cond3(0, 0, y) :|: z'' = y, z = 1, y >= 0, z' = 0 cond3(z, z', z'') -{ 3 }-> cond1(and(1, 1), 1 + x4, 1 + x6) :|: x4 >= 0, z' = 1 + x4, x6 >= 0, z'' = 1 + x6, z = 0 cond3(z, z', z'') -{ 3 }-> cond1(and(1, 0), 1 + x4, 0) :|: z'' = 0, x4 >= 0, z' = 1 + x4, z = 0 cond3(z, z', z'') -{ 3 }-> cond1(and(0, 1), 0, 1 + x5) :|: x5 >= 0, z'' = 1 + x5, z = 0, z' = 0 cond3(z, z', z'') -{ 3 }-> cond1(and(0, 0), 0, 0) :|: z'' = 0, z = 0, z' = 0 cond4(z, z', z'') -{ 3 }-> cond4(1, x, x7) :|: z' = x, z = 1, x7 >= 0, x >= 0, z'' = 1 + x7 cond4(z, z', z'') -{ 3 }-> cond4(0, x, 0) :|: z'' = 0, z' = x, z = 1, x >= 0 cond4(z, z', z'') -{ 3 }-> cond1(and(1, 1), 1 + x8, 1 + x10) :|: z' = 1 + x8, x8 >= 0, z'' = 1 + x10, x10 >= 0, z = 0 cond4(z, z', z'') -{ 3 }-> cond1(and(1, 0), 1 + x8, 0) :|: z'' = 0, z' = 1 + x8, x8 >= 0, z = 0 cond4(z, z', z'') -{ 3 }-> cond1(and(0, 1), 0, 1 + x9) :|: z = 0, x9 >= 0, z' = 0, z'' = 1 + x9 cond4(z, z', z'') -{ 3 }-> cond1(and(0, 0), 0, 0) :|: z'' = 0, z = 0, z' = 0 gr(z, z') -{ 1 }-> gr(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x gr(z, z') -{ 1 }-> 1 :|: x >= 0, z = 1 + x, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x p(z) -{ 1 }-> 0 :|: z = 0 ---------------------------------------- (11) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: x >= 0, z = x, z' = 0 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: x >= 0, z = x, z' = 0 cond1(z, z', z'') -{ 2 }-> cond2(gr(x'', y'), 1 + x'', 1 + y') :|: z' = 1 + x'', z = 1, y' >= 0, x'' >= 0, z'' = 1 + y' cond1(z, z', z'') -{ 2 }-> cond2(1, 1 + x', 0) :|: z'' = 0, z' = 1 + x', z = 1, x' >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, 0, y) :|: z'' = y, z = 1, y >= 0, z' = 0 cond2(z, z', z'') -{ 2 }-> cond4(1, x, 1 + x2) :|: z' = x, x >= 0, z'' = 1 + x2, z = 0, x2 >= 0 cond2(z, z', z'') -{ 2 }-> cond4(0, x, 0) :|: z'' = 0, z' = x, x >= 0, z = 0 cond2(z, z', z'') -{ 2 }-> cond3(1, 1 + x1, y) :|: x1 >= 0, z'' = y, z = 1, y >= 0, z' = 1 + x1 cond2(z, z', z'') -{ 2 }-> cond3(0, 0, y) :|: z'' = y, z = 1, y >= 0, z' = 0 cond3(z, z', z'') -{ 3 }-> cond3(1, x3, y) :|: z'' = y, z = 1, z' = 1 + x3, y >= 0, x3 >= 0 cond3(z, z', z'') -{ 3 }-> cond3(0, 0, y) :|: z'' = y, z = 1, y >= 0, z' = 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + x4, 1 + x6) :|: x4 >= 0, z' = 1 + x4, x6 >= 0, z'' = 1 + x6, z = 0, 1 = 1 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + x5) :|: x5 >= 0, z'' = 1 + x5, z = 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 1 + x4, 0) :|: z'' = 0, x4 >= 0, z' = 1 + x4, z = 0, x >= 0, 1 = x, 0 = 0 cond4(z, z', z'') -{ 3 }-> cond4(1, x, x7) :|: z' = x, z = 1, x7 >= 0, x >= 0, z'' = 1 + x7 cond4(z, z', z'') -{ 3 }-> cond4(0, x, 0) :|: z'' = 0, z' = x, z = 1, x >= 0 cond4(z, z', z'') -{ 4 }-> cond1(1, 1 + x8, 1 + x10) :|: z' = 1 + x8, x8 >= 0, z'' = 1 + x10, x10 >= 0, z = 0, 1 = 1 cond4(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond4(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + x9) :|: z = 0, x9 >= 0, z' = 0, z'' = 1 + x9, 1 = x, x >= 0, 0 = 0 cond4(z, z', z'') -{ 4 }-> cond1(0, 1 + x8, 0) :|: z'' = 0, z' = 1 + x8, x8 >= 0, z = 0, x >= 0, 1 = x, 0 = 0 gr(z, z') -{ 1 }-> gr(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x gr(z, z') -{ 1 }-> 1 :|: x >= 0, z = 1 + x, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x p(z) -{ 1 }-> 0 :|: z = 0 ---------------------------------------- (13) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 cond1(z, z', z'') -{ 2 }-> cond2(gr(z' - 1, z'' - 1), 1 + (z' - 1), 1 + (z'' - 1)) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(1, 1 + (z' - 1), 0) :|: z'' = 0, z = 1, z' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond2(z, z', z'') -{ 2 }-> cond4(1, z', 1 + (z'' - 1)) :|: z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 2 }-> cond4(0, z', 0) :|: z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 2 }-> cond3(1, 1 + (z' - 1), z'') :|: z' - 1 >= 0, z = 1, z'' >= 0 cond2(z, z', z'') -{ 2 }-> cond3(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond3(z, z', z'') -{ 3 }-> cond3(1, z' - 1, z'') :|: z = 1, z'' >= 0, z' - 1 >= 0 cond3(z, z', z'') -{ 3 }-> cond3(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0, 1 = 1 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, x >= 0, 1 = x, 0 = 0 cond4(z, z', z'') -{ 3 }-> cond4(1, z', z'' - 1) :|: z = 1, z'' - 1 >= 0, z' >= 0 cond4(z, z', z'') -{ 3 }-> cond4(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 cond4(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0, 1 = 1 cond4(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond4(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z = 0, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond4(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, x >= 0, 1 = x, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 ---------------------------------------- (15) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { and } { p } { gr } { cond2, cond1, cond3, cond4 } ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 cond1(z, z', z'') -{ 2 }-> cond2(gr(z' - 1, z'' - 1), 1 + (z' - 1), 1 + (z'' - 1)) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(1, 1 + (z' - 1), 0) :|: z'' = 0, z = 1, z' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond2(z, z', z'') -{ 2 }-> cond4(1, z', 1 + (z'' - 1)) :|: z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 2 }-> cond4(0, z', 0) :|: z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 2 }-> cond3(1, 1 + (z' - 1), z'') :|: z' - 1 >= 0, z = 1, z'' >= 0 cond2(z, z', z'') -{ 2 }-> cond3(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond3(z, z', z'') -{ 3 }-> cond3(1, z' - 1, z'') :|: z = 1, z'' >= 0, z' - 1 >= 0 cond3(z, z', z'') -{ 3 }-> cond3(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0, 1 = 1 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, x >= 0, 1 = x, 0 = 0 cond4(z, z', z'') -{ 3 }-> cond4(1, z', z'' - 1) :|: z = 1, z'' - 1 >= 0, z' >= 0 cond4(z, z', z'') -{ 3 }-> cond4(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 cond4(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0, 1 = 1 cond4(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond4(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z = 0, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond4(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, x >= 0, 1 = x, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {and}, {p}, {gr}, {cond2,cond1,cond3,cond4} ---------------------------------------- (17) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 cond1(z, z', z'') -{ 2 }-> cond2(gr(z' - 1, z'' - 1), 1 + (z' - 1), 1 + (z'' - 1)) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(1, 1 + (z' - 1), 0) :|: z'' = 0, z = 1, z' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond2(z, z', z'') -{ 2 }-> cond4(1, z', 1 + (z'' - 1)) :|: z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 2 }-> cond4(0, z', 0) :|: z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 2 }-> cond3(1, 1 + (z' - 1), z'') :|: z' - 1 >= 0, z = 1, z'' >= 0 cond2(z, z', z'') -{ 2 }-> cond3(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond3(z, z', z'') -{ 3 }-> cond3(1, z' - 1, z'') :|: z = 1, z'' >= 0, z' - 1 >= 0 cond3(z, z', z'') -{ 3 }-> cond3(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0, 1 = 1 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, x >= 0, 1 = x, 0 = 0 cond4(z, z', z'') -{ 3 }-> cond4(1, z', z'' - 1) :|: z = 1, z'' - 1 >= 0, z' >= 0 cond4(z, z', z'') -{ 3 }-> cond4(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 cond4(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0, 1 = 1 cond4(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond4(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z = 0, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond4(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, x >= 0, 1 = x, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {and}, {p}, {gr}, {cond2,cond1,cond3,cond4} ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: and after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 cond1(z, z', z'') -{ 2 }-> cond2(gr(z' - 1, z'' - 1), 1 + (z' - 1), 1 + (z'' - 1)) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(1, 1 + (z' - 1), 0) :|: z'' = 0, z = 1, z' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond2(z, z', z'') -{ 2 }-> cond4(1, z', 1 + (z'' - 1)) :|: z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 2 }-> cond4(0, z', 0) :|: z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 2 }-> cond3(1, 1 + (z' - 1), z'') :|: z' - 1 >= 0, z = 1, z'' >= 0 cond2(z, z', z'') -{ 2 }-> cond3(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond3(z, z', z'') -{ 3 }-> cond3(1, z' - 1, z'') :|: z = 1, z'' >= 0, z' - 1 >= 0 cond3(z, z', z'') -{ 3 }-> cond3(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0, 1 = 1 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, x >= 0, 1 = x, 0 = 0 cond4(z, z', z'') -{ 3 }-> cond4(1, z', z'' - 1) :|: z = 1, z'' - 1 >= 0, z' >= 0 cond4(z, z', z'') -{ 3 }-> cond4(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 cond4(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0, 1 = 1 cond4(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond4(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z = 0, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond4(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, x >= 0, 1 = x, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {and}, {p}, {gr}, {cond2,cond1,cond3,cond4} Previous analysis results are: and: runtime: ?, size: O(1) [1] ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: and after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 cond1(z, z', z'') -{ 2 }-> cond2(gr(z' - 1, z'' - 1), 1 + (z' - 1), 1 + (z'' - 1)) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(1, 1 + (z' - 1), 0) :|: z'' = 0, z = 1, z' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond2(z, z', z'') -{ 2 }-> cond4(1, z', 1 + (z'' - 1)) :|: z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 2 }-> cond4(0, z', 0) :|: z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 2 }-> cond3(1, 1 + (z' - 1), z'') :|: z' - 1 >= 0, z = 1, z'' >= 0 cond2(z, z', z'') -{ 2 }-> cond3(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond3(z, z', z'') -{ 3 }-> cond3(1, z' - 1, z'') :|: z = 1, z'' >= 0, z' - 1 >= 0 cond3(z, z', z'') -{ 3 }-> cond3(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0, 1 = 1 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, x >= 0, 1 = x, 0 = 0 cond4(z, z', z'') -{ 3 }-> cond4(1, z', z'' - 1) :|: z = 1, z'' - 1 >= 0, z' >= 0 cond4(z, z', z'') -{ 3 }-> cond4(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 cond4(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0, 1 = 1 cond4(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond4(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z = 0, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond4(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, x >= 0, 1 = x, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {gr}, {cond2,cond1,cond3,cond4} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (23) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 cond1(z, z', z'') -{ 2 }-> cond2(gr(z' - 1, z'' - 1), 1 + (z' - 1), 1 + (z'' - 1)) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(1, 1 + (z' - 1), 0) :|: z'' = 0, z = 1, z' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond2(z, z', z'') -{ 2 }-> cond4(1, z', 1 + (z'' - 1)) :|: z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 2 }-> cond4(0, z', 0) :|: z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 2 }-> cond3(1, 1 + (z' - 1), z'') :|: z' - 1 >= 0, z = 1, z'' >= 0 cond2(z, z', z'') -{ 2 }-> cond3(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond3(z, z', z'') -{ 3 }-> cond3(1, z' - 1, z'') :|: z = 1, z'' >= 0, z' - 1 >= 0 cond3(z, z', z'') -{ 3 }-> cond3(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0, 1 = 1 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, x >= 0, 1 = x, 0 = 0 cond4(z, z', z'') -{ 3 }-> cond4(1, z', z'' - 1) :|: z = 1, z'' - 1 >= 0, z' >= 0 cond4(z, z', z'') -{ 3 }-> cond4(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 cond4(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0, 1 = 1 cond4(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond4(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z = 0, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond4(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, x >= 0, 1 = x, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {gr}, {cond2,cond1,cond3,cond4} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: p after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 cond1(z, z', z'') -{ 2 }-> cond2(gr(z' - 1, z'' - 1), 1 + (z' - 1), 1 + (z'' - 1)) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(1, 1 + (z' - 1), 0) :|: z'' = 0, z = 1, z' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond2(z, z', z'') -{ 2 }-> cond4(1, z', 1 + (z'' - 1)) :|: z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 2 }-> cond4(0, z', 0) :|: z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 2 }-> cond3(1, 1 + (z' - 1), z'') :|: z' - 1 >= 0, z = 1, z'' >= 0 cond2(z, z', z'') -{ 2 }-> cond3(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond3(z, z', z'') -{ 3 }-> cond3(1, z' - 1, z'') :|: z = 1, z'' >= 0, z' - 1 >= 0 cond3(z, z', z'') -{ 3 }-> cond3(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0, 1 = 1 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, x >= 0, 1 = x, 0 = 0 cond4(z, z', z'') -{ 3 }-> cond4(1, z', z'' - 1) :|: z = 1, z'' - 1 >= 0, z' >= 0 cond4(z, z', z'') -{ 3 }-> cond4(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 cond4(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0, 1 = 1 cond4(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond4(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z = 0, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond4(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, x >= 0, 1 = x, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {gr}, {cond2,cond1,cond3,cond4} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] p: runtime: ?, size: O(n^1) [z] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: p after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 cond1(z, z', z'') -{ 2 }-> cond2(gr(z' - 1, z'' - 1), 1 + (z' - 1), 1 + (z'' - 1)) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(1, 1 + (z' - 1), 0) :|: z'' = 0, z = 1, z' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond2(z, z', z'') -{ 2 }-> cond4(1, z', 1 + (z'' - 1)) :|: z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 2 }-> cond4(0, z', 0) :|: z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 2 }-> cond3(1, 1 + (z' - 1), z'') :|: z' - 1 >= 0, z = 1, z'' >= 0 cond2(z, z', z'') -{ 2 }-> cond3(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond3(z, z', z'') -{ 3 }-> cond3(1, z' - 1, z'') :|: z = 1, z'' >= 0, z' - 1 >= 0 cond3(z, z', z'') -{ 3 }-> cond3(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0, 1 = 1 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, x >= 0, 1 = x, 0 = 0 cond4(z, z', z'') -{ 3 }-> cond4(1, z', z'' - 1) :|: z = 1, z'' - 1 >= 0, z' >= 0 cond4(z, z', z'') -{ 3 }-> cond4(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 cond4(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0, 1 = 1 cond4(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond4(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z = 0, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond4(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, x >= 0, 1 = x, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {gr}, {cond2,cond1,cond3,cond4} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] p: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (29) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 cond1(z, z', z'') -{ 2 }-> cond2(gr(z' - 1, z'' - 1), 1 + (z' - 1), 1 + (z'' - 1)) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(1, 1 + (z' - 1), 0) :|: z'' = 0, z = 1, z' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond2(z, z', z'') -{ 2 }-> cond4(1, z', 1 + (z'' - 1)) :|: z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 2 }-> cond4(0, z', 0) :|: z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 2 }-> cond3(1, 1 + (z' - 1), z'') :|: z' - 1 >= 0, z = 1, z'' >= 0 cond2(z, z', z'') -{ 2 }-> cond3(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond3(z, z', z'') -{ 3 }-> cond3(1, z' - 1, z'') :|: z = 1, z'' >= 0, z' - 1 >= 0 cond3(z, z', z'') -{ 3 }-> cond3(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0, 1 = 1 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, x >= 0, 1 = x, 0 = 0 cond4(z, z', z'') -{ 3 }-> cond4(1, z', z'' - 1) :|: z = 1, z'' - 1 >= 0, z' >= 0 cond4(z, z', z'') -{ 3 }-> cond4(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 cond4(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0, 1 = 1 cond4(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond4(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z = 0, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond4(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, x >= 0, 1 = x, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {gr}, {cond2,cond1,cond3,cond4} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] p: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: gr after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 cond1(z, z', z'') -{ 2 }-> cond2(gr(z' - 1, z'' - 1), 1 + (z' - 1), 1 + (z'' - 1)) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(1, 1 + (z' - 1), 0) :|: z'' = 0, z = 1, z' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond2(z, z', z'') -{ 2 }-> cond4(1, z', 1 + (z'' - 1)) :|: z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 2 }-> cond4(0, z', 0) :|: z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 2 }-> cond3(1, 1 + (z' - 1), z'') :|: z' - 1 >= 0, z = 1, z'' >= 0 cond2(z, z', z'') -{ 2 }-> cond3(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond3(z, z', z'') -{ 3 }-> cond3(1, z' - 1, z'') :|: z = 1, z'' >= 0, z' - 1 >= 0 cond3(z, z', z'') -{ 3 }-> cond3(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0, 1 = 1 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, x >= 0, 1 = x, 0 = 0 cond4(z, z', z'') -{ 3 }-> cond4(1, z', z'' - 1) :|: z = 1, z'' - 1 >= 0, z' >= 0 cond4(z, z', z'') -{ 3 }-> cond4(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 cond4(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0, 1 = 1 cond4(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond4(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z = 0, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond4(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, x >= 0, 1 = x, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {gr}, {cond2,cond1,cond3,cond4} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: ?, size: O(1) [1] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: gr after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z' ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 cond1(z, z', z'') -{ 2 }-> cond2(gr(z' - 1, z'' - 1), 1 + (z' - 1), 1 + (z'' - 1)) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(1, 1 + (z' - 1), 0) :|: z'' = 0, z = 1, z' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond2(z, z', z'') -{ 2 }-> cond4(1, z', 1 + (z'' - 1)) :|: z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 2 }-> cond4(0, z', 0) :|: z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 2 }-> cond3(1, 1 + (z' - 1), z'') :|: z' - 1 >= 0, z = 1, z'' >= 0 cond2(z, z', z'') -{ 2 }-> cond3(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond3(z, z', z'') -{ 3 }-> cond3(1, z' - 1, z'') :|: z = 1, z'' >= 0, z' - 1 >= 0 cond3(z, z', z'') -{ 3 }-> cond3(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0, 1 = 1 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, x >= 0, 1 = x, 0 = 0 cond4(z, z', z'') -{ 3 }-> cond4(1, z', z'' - 1) :|: z = 1, z'' - 1 >= 0, z' >= 0 cond4(z, z', z'') -{ 3 }-> cond4(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 cond4(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0, 1 = 1 cond4(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond4(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z = 0, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond4(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, x >= 0, 1 = x, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {cond2,cond1,cond3,cond4} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: O(n^1) [2 + z'], size: O(1) [1] ---------------------------------------- (35) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 cond1(z, z', z'') -{ 3 + z'' }-> cond2(s, 1 + (z' - 1), 1 + (z'' - 1)) :|: s >= 0, s <= 1, z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(1, 1 + (z' - 1), 0) :|: z'' = 0, z = 1, z' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond2(z, z', z'') -{ 2 }-> cond4(1, z', 1 + (z'' - 1)) :|: z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 2 }-> cond4(0, z', 0) :|: z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 2 }-> cond3(1, 1 + (z' - 1), z'') :|: z' - 1 >= 0, z = 1, z'' >= 0 cond2(z, z', z'') -{ 2 }-> cond3(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond3(z, z', z'') -{ 3 }-> cond3(1, z' - 1, z'') :|: z = 1, z'' >= 0, z' - 1 >= 0 cond3(z, z', z'') -{ 3 }-> cond3(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0, 1 = 1 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, x >= 0, 1 = x, 0 = 0 cond4(z, z', z'') -{ 3 }-> cond4(1, z', z'' - 1) :|: z = 1, z'' - 1 >= 0, z' >= 0 cond4(z, z', z'') -{ 3 }-> cond4(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 cond4(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0, 1 = 1 cond4(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond4(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z = 0, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond4(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, x >= 0, 1 = x, 0 = 0 gr(z, z') -{ 2 + z' }-> s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {cond2,cond1,cond3,cond4} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: O(n^1) [2 + z'], size: O(1) [1] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: cond2 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 Computed SIZE bound using CoFloCo for: cond1 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 Computed SIZE bound using CoFloCo for: cond3 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 Computed SIZE bound using CoFloCo for: cond4 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 cond1(z, z', z'') -{ 3 + z'' }-> cond2(s, 1 + (z' - 1), 1 + (z'' - 1)) :|: s >= 0, s <= 1, z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(1, 1 + (z' - 1), 0) :|: z'' = 0, z = 1, z' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond2(z, z', z'') -{ 2 }-> cond4(1, z', 1 + (z'' - 1)) :|: z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 2 }-> cond4(0, z', 0) :|: z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 2 }-> cond3(1, 1 + (z' - 1), z'') :|: z' - 1 >= 0, z = 1, z'' >= 0 cond2(z, z', z'') -{ 2 }-> cond3(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond3(z, z', z'') -{ 3 }-> cond3(1, z' - 1, z'') :|: z = 1, z'' >= 0, z' - 1 >= 0 cond3(z, z', z'') -{ 3 }-> cond3(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0, 1 = 1 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, x >= 0, 1 = x, 0 = 0 cond4(z, z', z'') -{ 3 }-> cond4(1, z', z'' - 1) :|: z = 1, z'' - 1 >= 0, z' >= 0 cond4(z, z', z'') -{ 3 }-> cond4(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 cond4(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0, 1 = 1 cond4(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond4(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z = 0, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond4(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, x >= 0, 1 = x, 0 = 0 gr(z, z') -{ 2 + z' }-> s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {cond2,cond1,cond3,cond4} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: O(n^1) [2 + z'], size: O(1) [1] cond2: runtime: ?, size: O(1) [0] cond1: runtime: ?, size: O(1) [0] cond3: runtime: ?, size: O(1) [0] cond4: runtime: ?, size: O(1) [0] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: cond2 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 12 + 3*z' + 3*z'' Computed RUNTIME bound using CoFloCo for: cond1 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 15 + 3*z' + 4*z'' Computed RUNTIME bound using CoFloCo for: cond3 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 22 + 3*z' + 4*z'' Computed RUNTIME bound using CoFloCo for: cond4 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 22 + 3*z' + 4*z'' ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 cond1(z, z', z'') -{ 3 + z'' }-> cond2(s, 1 + (z' - 1), 1 + (z'' - 1)) :|: s >= 0, s <= 1, z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(1, 1 + (z' - 1), 0) :|: z'' = 0, z = 1, z' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond2(z, z', z'') -{ 2 }-> cond4(1, z', 1 + (z'' - 1)) :|: z' >= 0, z = 0, z'' - 1 >= 0 cond2(z, z', z'') -{ 2 }-> cond4(0, z', 0) :|: z'' = 0, z' >= 0, z = 0 cond2(z, z', z'') -{ 2 }-> cond3(1, 1 + (z' - 1), z'') :|: z' - 1 >= 0, z = 1, z'' >= 0 cond2(z, z', z'') -{ 2 }-> cond3(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond3(z, z', z'') -{ 3 }-> cond3(1, z' - 1, z'') :|: z = 1, z'' >= 0, z' - 1 >= 0 cond3(z, z', z'') -{ 3 }-> cond3(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 cond3(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0, 1 = 1 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond3(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, x >= 0, 1 = x, 0 = 0 cond4(z, z', z'') -{ 3 }-> cond4(1, z', z'' - 1) :|: z = 1, z'' - 1 >= 0, z' >= 0 cond4(z, z', z'') -{ 3 }-> cond4(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 cond4(z, z', z'') -{ 4 }-> cond1(1, 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0, 1 = 1 cond4(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond4(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z = 0, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond4(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z' - 1 >= 0, z = 0, x >= 0, 1 = x, 0 = 0 gr(z, z') -{ 2 + z' }-> s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: O(n^1) [2 + z'], size: O(1) [1] cond2: runtime: O(n^1) [12 + 3*z' + 3*z''], size: O(1) [0] cond1: runtime: O(n^1) [15 + 3*z' + 4*z''], size: O(1) [0] cond3: runtime: O(n^1) [22 + 3*z' + 4*z''], size: O(1) [0] cond4: runtime: O(n^1) [22 + 3*z' + 4*z''], size: O(1) [0] ---------------------------------------- (41) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (42) BOUNDS(1, n^1) ---------------------------------------- (43) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (44) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(x, y), x, y) cond2(true, x, y) -> cond3(gr(x, 0'), x, y) cond2(false, x, y) -> cond4(gr(y, 0'), x, y) cond3(true, x, y) -> cond3(gr(x, 0'), p(x), y) cond3(false, x, y) -> cond1(and(gr(x, 0'), gr(y, 0')), x, y) cond4(true, x, y) -> cond4(gr(y, 0'), x, p(y)) cond4(false, x, y) -> cond1(and(gr(x, 0'), gr(y, 0')), x, y) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) and(true, true) -> true and(false, x) -> false and(x, false) -> false p(0') -> 0' p(s(x)) -> x S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (45) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (46) Obligation: Innermost TRS: Rules: cond1(true, x, y) -> cond2(gr(x, y), x, y) cond2(true, x, y) -> cond3(gr(x, 0'), x, y) cond2(false, x, y) -> cond4(gr(y, 0'), x, y) cond3(true, x, y) -> cond3(gr(x, 0'), p(x), y) cond3(false, x, y) -> cond1(and(gr(x, 0'), gr(y, 0')), x, y) cond4(true, x, y) -> cond4(gr(y, 0'), x, p(y)) cond4(false, x, y) -> cond1(and(gr(x, 0'), gr(y, 0')), x, y) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) and(true, true) -> true and(false, x) -> false and(x, false) -> false p(0') -> 0' p(s(x)) -> x Types: cond1 :: true:false -> 0':s -> 0':s -> cond1:cond2:cond3:cond4 true :: true:false cond2 :: true:false -> 0':s -> 0':s -> cond1:cond2:cond3:cond4 gr :: 0':s -> 0':s -> true:false cond3 :: true:false -> 0':s -> 0':s -> cond1:cond2:cond3:cond4 0' :: 0':s false :: true:false cond4 :: true:false -> 0':s -> 0':s -> cond1:cond2:cond3:cond4 p :: 0':s -> 0':s and :: true:false -> true:false -> true:false s :: 0':s -> 0':s hole_cond1:cond2:cond3:cond41_0 :: cond1:cond2:cond3:cond4 hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s ---------------------------------------- (47) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: cond1, cond2, gr, cond3, cond4 They will be analysed ascendingly in the following order: cond1 = cond2 gr < cond1 cond1 = cond3 cond1 = cond4 gr < cond2 cond2 = cond3 cond2 = cond4 gr < cond3 gr < cond4 cond3 = cond4 ---------------------------------------- (48) Obligation: Innermost TRS: Rules: cond1(true, x, y) -> cond2(gr(x, y), x, y) cond2(true, x, y) -> cond3(gr(x, 0'), x, y) cond2(false, x, y) -> cond4(gr(y, 0'), x, y) cond3(true, x, y) -> cond3(gr(x, 0'), p(x), y) cond3(false, x, y) -> cond1(and(gr(x, 0'), gr(y, 0')), x, y) cond4(true, x, y) -> cond4(gr(y, 0'), x, p(y)) cond4(false, x, y) -> cond1(and(gr(x, 0'), gr(y, 0')), x, y) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) and(true, true) -> true and(false, x) -> false and(x, false) -> false p(0') -> 0' p(s(x)) -> x Types: cond1 :: true:false -> 0':s -> 0':s -> cond1:cond2:cond3:cond4 true :: true:false cond2 :: true:false -> 0':s -> 0':s -> cond1:cond2:cond3:cond4 gr :: 0':s -> 0':s -> true:false cond3 :: true:false -> 0':s -> 0':s -> cond1:cond2:cond3:cond4 0' :: 0':s false :: true:false cond4 :: true:false -> 0':s -> 0':s -> cond1:cond2:cond3:cond4 p :: 0':s -> 0':s and :: true:false -> true:false -> true:false s :: 0':s -> 0':s hole_cond1:cond2:cond3:cond41_0 :: cond1:cond2:cond3:cond4 hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: gr, cond1, cond2, cond3, cond4 They will be analysed ascendingly in the following order: cond1 = cond2 gr < cond1 cond1 = cond3 cond1 = cond4 gr < cond2 cond2 = cond3 cond2 = cond4 gr < cond3 gr < cond4 cond3 = cond4 ---------------------------------------- (49) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) -> false, rt in Omega(1 + n6_0) Induction Base: gr(gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) false Induction Step: gr(gen_0':s4_0(+(n6_0, 1)), gen_0':s4_0(+(n6_0, 1))) ->_R^Omega(1) gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) ->_IH false We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (50) Complex Obligation (BEST) ---------------------------------------- (51) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: cond1(true, x, y) -> cond2(gr(x, y), x, y) cond2(true, x, y) -> cond3(gr(x, 0'), x, y) cond2(false, x, y) -> cond4(gr(y, 0'), x, y) cond3(true, x, y) -> cond3(gr(x, 0'), p(x), y) cond3(false, x, y) -> cond1(and(gr(x, 0'), gr(y, 0')), x, y) cond4(true, x, y) -> cond4(gr(y, 0'), x, p(y)) cond4(false, x, y) -> cond1(and(gr(x, 0'), gr(y, 0')), x, y) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) and(true, true) -> true and(false, x) -> false and(x, false) -> false p(0') -> 0' p(s(x)) -> x Types: cond1 :: true:false -> 0':s -> 0':s -> cond1:cond2:cond3:cond4 true :: true:false cond2 :: true:false -> 0':s -> 0':s -> cond1:cond2:cond3:cond4 gr :: 0':s -> 0':s -> true:false cond3 :: true:false -> 0':s -> 0':s -> cond1:cond2:cond3:cond4 0' :: 0':s false :: true:false cond4 :: true:false -> 0':s -> 0':s -> cond1:cond2:cond3:cond4 p :: 0':s -> 0':s and :: true:false -> true:false -> true:false s :: 0':s -> 0':s hole_cond1:cond2:cond3:cond41_0 :: cond1:cond2:cond3:cond4 hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: gr, cond1, cond2, cond3, cond4 They will be analysed ascendingly in the following order: cond1 = cond2 gr < cond1 cond1 = cond3 cond1 = cond4 gr < cond2 cond2 = cond3 cond2 = cond4 gr < cond3 gr < cond4 cond3 = cond4 ---------------------------------------- (52) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (53) BOUNDS(n^1, INF) ---------------------------------------- (54) Obligation: Innermost TRS: Rules: cond1(true, x, y) -> cond2(gr(x, y), x, y) cond2(true, x, y) -> cond3(gr(x, 0'), x, y) cond2(false, x, y) -> cond4(gr(y, 0'), x, y) cond3(true, x, y) -> cond3(gr(x, 0'), p(x), y) cond3(false, x, y) -> cond1(and(gr(x, 0'), gr(y, 0')), x, y) cond4(true, x, y) -> cond4(gr(y, 0'), x, p(y)) cond4(false, x, y) -> cond1(and(gr(x, 0'), gr(y, 0')), x, y) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) and(true, true) -> true and(false, x) -> false and(x, false) -> false p(0') -> 0' p(s(x)) -> x Types: cond1 :: true:false -> 0':s -> 0':s -> cond1:cond2:cond3:cond4 true :: true:false cond2 :: true:false -> 0':s -> 0':s -> cond1:cond2:cond3:cond4 gr :: 0':s -> 0':s -> true:false cond3 :: true:false -> 0':s -> 0':s -> cond1:cond2:cond3:cond4 0' :: 0':s false :: true:false cond4 :: true:false -> 0':s -> 0':s -> cond1:cond2:cond3:cond4 p :: 0':s -> 0':s and :: true:false -> true:false -> true:false s :: 0':s -> 0':s hole_cond1:cond2:cond3:cond41_0 :: cond1:cond2:cond3:cond4 hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s Lemmas: gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) -> false, rt in Omega(1 + n6_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: cond2, cond1, cond3, cond4 They will be analysed ascendingly in the following order: cond1 = cond2 cond1 = cond3 cond1 = cond4 cond2 = cond3 cond2 = cond4 cond3 = cond4