/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 3 ms] (10) CpxRNTS (11) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxRNTS (13) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) IntTrsBoundProof [UPPER BOUND(ID), 161 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 55 ms] (20) CpxRNTS (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 303 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 156 ms] (26) CpxRNTS (27) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 2662 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 1773 ms] (32) CpxRNTS (33) FinalProof [FINISHED, 0 ms] (34) BOUNDS(1, n^2) (35) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (36) CpxTRS (37) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (38) typed CpxTrs (39) OrderProof [LOWER BOUND(ID), 0 ms] (40) typed CpxTrs (41) RewriteLemmaProof [LOWER BOUND(ID), 280 ms] (42) BEST (43) proven lower bound (44) LowerBoundPropagationProof [FINISHED, 0 ms] (45) BOUNDS(n^1, INF) (46) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: cond1(true, x, y, z) -> cond2(gr(y, z), x, y, z) cond2(true, x, y, z) -> cond2(gr(y, z), x, p(y), z) cond2(false, x, y, z) -> cond1(gr(x, z), p(x), y, z) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) p(0) -> 0 p(s(x)) -> x S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: cond1(true, x, y, z) -> cond2(gr(y, z), x, y, z) [1] cond2(true, x, y, z) -> cond2(gr(y, z), x, p(y), z) [1] cond2(false, x, y, z) -> cond1(gr(x, z), p(x), y, z) [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] p(0) -> 0 [1] p(s(x)) -> x [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond1(true, x, y, z) -> cond2(gr(y, z), x, y, z) [1] cond2(true, x, y, z) -> cond2(gr(y, z), x, p(y), z) [1] cond2(false, x, y, z) -> cond1(gr(x, z), p(x), y, z) [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] p(0) -> 0 [1] p(s(x)) -> x [1] The TRS has the following type information: cond1 :: true:false -> 0:s -> 0:s -> 0:s -> cond1:cond2 true :: true:false cond2 :: true:false -> 0:s -> 0:s -> 0:s -> cond1:cond2 gr :: 0:s -> 0:s -> true:false p :: 0:s -> 0:s false :: true:false 0 :: 0:s s :: 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: cond1_4 cond2_4 (c) The following functions are completely defined: gr_2 p_1 Due to the following rules being added: none And the following fresh constants: const ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond1(true, x, y, z) -> cond2(gr(y, z), x, y, z) [1] cond2(true, x, y, z) -> cond2(gr(y, z), x, p(y), z) [1] cond2(false, x, y, z) -> cond1(gr(x, z), p(x), y, z) [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] p(0) -> 0 [1] p(s(x)) -> x [1] The TRS has the following type information: cond1 :: true:false -> 0:s -> 0:s -> 0:s -> cond1:cond2 true :: true:false cond2 :: true:false -> 0:s -> 0:s -> 0:s -> cond1:cond2 gr :: 0:s -> 0:s -> true:false p :: 0:s -> 0:s false :: true:false 0 :: 0:s s :: 0:s -> 0:s const :: cond1:cond2 Rewrite Strategy: INNERMOST ---------------------------------------- (7) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond1(true, x, 0, z) -> cond2(false, x, 0, z) [2] cond1(true, x, s(x'), 0) -> cond2(true, x, s(x'), 0) [2] cond1(true, x, s(x''), s(y')) -> cond2(gr(x'', y'), x, s(x''), s(y')) [2] cond2(true, x, 0, z) -> cond2(false, x, 0, z) [3] cond2(true, x, s(x1), 0) -> cond2(true, x, x1, 0) [3] cond2(true, x, s(x2), s(y'')) -> cond2(gr(x2, y''), x, x2, s(y'')) [3] cond2(false, 0, y, z) -> cond1(false, 0, y, z) [3] cond2(false, s(x3), y, 0) -> cond1(true, x3, y, 0) [3] cond2(false, s(x4), y, s(y1)) -> cond1(gr(x4, y1), x4, y, s(y1)) [3] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] p(0) -> 0 [1] p(s(x)) -> x [1] The TRS has the following type information: cond1 :: true:false -> 0:s -> 0:s -> 0:s -> cond1:cond2 true :: true:false cond2 :: true:false -> 0:s -> 0:s -> 0:s -> cond1:cond2 gr :: 0:s -> 0:s -> true:false p :: 0:s -> 0:s false :: true:false 0 :: 0:s s :: 0:s -> 0:s const :: cond1:cond2 Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: true => 1 false => 0 0 => 0 const => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: cond1(z', z'', z1, z2) -{ 2 }-> cond2(gr(x'', y'), x, 1 + x'', 1 + y') :|: z1 = 1 + x'', x >= 0, z'' = x, y' >= 0, z2 = 1 + y', z' = 1, x'' >= 0 cond1(z', z'', z1, z2) -{ 2 }-> cond2(1, x, 1 + x', 0) :|: z2 = 0, x >= 0, x' >= 0, z'' = x, z' = 1, z1 = 1 + x' cond1(z', z'', z1, z2) -{ 2 }-> cond2(0, x, 0, z) :|: z1 = 0, z >= 0, z2 = z, x >= 0, z'' = x, z' = 1 cond2(z', z'', z1, z2) -{ 3 }-> cond2(gr(x2, y''), x, x2, 1 + y'') :|: z2 = 1 + y'', x >= 0, z'' = x, y'' >= 0, z' = 1, x2 >= 0, z1 = 1 + x2 cond2(z', z'', z1, z2) -{ 3 }-> cond2(1, x, x1, 0) :|: x1 >= 0, z2 = 0, x >= 0, z'' = x, z' = 1, z1 = 1 + x1 cond2(z', z'', z1, z2) -{ 3 }-> cond2(0, x, 0, z) :|: z1 = 0, z >= 0, z2 = z, x >= 0, z'' = x, z' = 1 cond2(z', z'', z1, z2) -{ 3 }-> cond1(gr(x4, y1), x4, y, 1 + y1) :|: y1 >= 0, z2 = 1 + y1, z1 = y, x4 >= 0, z'' = 1 + x4, y >= 0, z' = 0 cond2(z', z'', z1, z2) -{ 3 }-> cond1(1, x3, y, 0) :|: z1 = y, z'' = 1 + x3, z2 = 0, y >= 0, x3 >= 0, z' = 0 cond2(z', z'', z1, z2) -{ 3 }-> cond1(0, 0, y, z) :|: z'' = 0, z1 = y, z >= 0, z2 = z, y >= 0, z' = 0 gr(z', z'') -{ 1 }-> gr(x, y) :|: z' = 1 + x, x >= 0, y >= 0, z'' = 1 + y gr(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' = 1 + x, x >= 0 gr(z', z'') -{ 1 }-> 0 :|: x >= 0, z'' = x, z' = 0 p(z') -{ 1 }-> x :|: z' = 1 + x, x >= 0 p(z') -{ 1 }-> 0 :|: z' = 0 ---------------------------------------- (11) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: cond1(z', z'', z1, z2) -{ 2 }-> cond2(gr(z1 - 1, z2 - 1), z'', 1 + (z1 - 1), 1 + (z2 - 1)) :|: z'' >= 0, z2 - 1 >= 0, z' = 1, z1 - 1 >= 0 cond1(z', z'', z1, z2) -{ 2 }-> cond2(1, z'', 1 + (z1 - 1), 0) :|: z2 = 0, z'' >= 0, z1 - 1 >= 0, z' = 1 cond1(z', z'', z1, z2) -{ 2 }-> cond2(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 1 cond2(z', z'', z1, z2) -{ 3 }-> cond2(gr(z1 - 1, z2 - 1), z'', z1 - 1, 1 + (z2 - 1)) :|: z'' >= 0, z2 - 1 >= 0, z' = 1, z1 - 1 >= 0 cond2(z', z'', z1, z2) -{ 3 }-> cond2(1, z'', z1 - 1, 0) :|: z1 - 1 >= 0, z2 = 0, z'' >= 0, z' = 1 cond2(z', z'', z1, z2) -{ 3 }-> cond2(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 1 cond2(z', z'', z1, z2) -{ 3 }-> cond1(gr(z'' - 1, z2 - 1), z'' - 1, z1, 1 + (z2 - 1)) :|: z2 - 1 >= 0, z'' - 1 >= 0, z1 >= 0, z' = 0 cond2(z', z'', z1, z2) -{ 3 }-> cond1(1, z'' - 1, z1, 0) :|: z2 = 0, z1 >= 0, z'' - 1 >= 0, z' = 0 cond2(z', z'', z1, z2) -{ 3 }-> cond1(0, 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 0 gr(z', z'') -{ 1 }-> gr(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 gr(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' - 1 >= 0 gr(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> 0 :|: z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 ---------------------------------------- (13) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { p } { gr } { cond2, cond1 } ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: cond1(z', z'', z1, z2) -{ 2 }-> cond2(gr(z1 - 1, z2 - 1), z'', 1 + (z1 - 1), 1 + (z2 - 1)) :|: z'' >= 0, z2 - 1 >= 0, z' = 1, z1 - 1 >= 0 cond1(z', z'', z1, z2) -{ 2 }-> cond2(1, z'', 1 + (z1 - 1), 0) :|: z2 = 0, z'' >= 0, z1 - 1 >= 0, z' = 1 cond1(z', z'', z1, z2) -{ 2 }-> cond2(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 1 cond2(z', z'', z1, z2) -{ 3 }-> cond2(gr(z1 - 1, z2 - 1), z'', z1 - 1, 1 + (z2 - 1)) :|: z'' >= 0, z2 - 1 >= 0, z' = 1, z1 - 1 >= 0 cond2(z', z'', z1, z2) -{ 3 }-> cond2(1, z'', z1 - 1, 0) :|: z1 - 1 >= 0, z2 = 0, z'' >= 0, z' = 1 cond2(z', z'', z1, z2) -{ 3 }-> cond2(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 1 cond2(z', z'', z1, z2) -{ 3 }-> cond1(gr(z'' - 1, z2 - 1), z'' - 1, z1, 1 + (z2 - 1)) :|: z2 - 1 >= 0, z'' - 1 >= 0, z1 >= 0, z' = 0 cond2(z', z'', z1, z2) -{ 3 }-> cond1(1, z'' - 1, z1, 0) :|: z2 = 0, z1 >= 0, z'' - 1 >= 0, z' = 0 cond2(z', z'', z1, z2) -{ 3 }-> cond1(0, 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 0 gr(z', z'') -{ 1 }-> gr(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 gr(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' - 1 >= 0 gr(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> 0 :|: z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 Function symbols to be analyzed: {p}, {gr}, {cond2,cond1} ---------------------------------------- (15) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: cond1(z', z'', z1, z2) -{ 2 }-> cond2(gr(z1 - 1, z2 - 1), z'', 1 + (z1 - 1), 1 + (z2 - 1)) :|: z'' >= 0, z2 - 1 >= 0, z' = 1, z1 - 1 >= 0 cond1(z', z'', z1, z2) -{ 2 }-> cond2(1, z'', 1 + (z1 - 1), 0) :|: z2 = 0, z'' >= 0, z1 - 1 >= 0, z' = 1 cond1(z', z'', z1, z2) -{ 2 }-> cond2(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 1 cond2(z', z'', z1, z2) -{ 3 }-> cond2(gr(z1 - 1, z2 - 1), z'', z1 - 1, 1 + (z2 - 1)) :|: z'' >= 0, z2 - 1 >= 0, z' = 1, z1 - 1 >= 0 cond2(z', z'', z1, z2) -{ 3 }-> cond2(1, z'', z1 - 1, 0) :|: z1 - 1 >= 0, z2 = 0, z'' >= 0, z' = 1 cond2(z', z'', z1, z2) -{ 3 }-> cond2(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 1 cond2(z', z'', z1, z2) -{ 3 }-> cond1(gr(z'' - 1, z2 - 1), z'' - 1, z1, 1 + (z2 - 1)) :|: z2 - 1 >= 0, z'' - 1 >= 0, z1 >= 0, z' = 0 cond2(z', z'', z1, z2) -{ 3 }-> cond1(1, z'' - 1, z1, 0) :|: z2 = 0, z1 >= 0, z'' - 1 >= 0, z' = 0 cond2(z', z'', z1, z2) -{ 3 }-> cond1(0, 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 0 gr(z', z'') -{ 1 }-> gr(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 gr(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' - 1 >= 0 gr(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> 0 :|: z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 Function symbols to be analyzed: {p}, {gr}, {cond2,cond1} ---------------------------------------- (17) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: p after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: cond1(z', z'', z1, z2) -{ 2 }-> cond2(gr(z1 - 1, z2 - 1), z'', 1 + (z1 - 1), 1 + (z2 - 1)) :|: z'' >= 0, z2 - 1 >= 0, z' = 1, z1 - 1 >= 0 cond1(z', z'', z1, z2) -{ 2 }-> cond2(1, z'', 1 + (z1 - 1), 0) :|: z2 = 0, z'' >= 0, z1 - 1 >= 0, z' = 1 cond1(z', z'', z1, z2) -{ 2 }-> cond2(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 1 cond2(z', z'', z1, z2) -{ 3 }-> cond2(gr(z1 - 1, z2 - 1), z'', z1 - 1, 1 + (z2 - 1)) :|: z'' >= 0, z2 - 1 >= 0, z' = 1, z1 - 1 >= 0 cond2(z', z'', z1, z2) -{ 3 }-> cond2(1, z'', z1 - 1, 0) :|: z1 - 1 >= 0, z2 = 0, z'' >= 0, z' = 1 cond2(z', z'', z1, z2) -{ 3 }-> cond2(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 1 cond2(z', z'', z1, z2) -{ 3 }-> cond1(gr(z'' - 1, z2 - 1), z'' - 1, z1, 1 + (z2 - 1)) :|: z2 - 1 >= 0, z'' - 1 >= 0, z1 >= 0, z' = 0 cond2(z', z'', z1, z2) -{ 3 }-> cond1(1, z'' - 1, z1, 0) :|: z2 = 0, z1 >= 0, z'' - 1 >= 0, z' = 0 cond2(z', z'', z1, z2) -{ 3 }-> cond1(0, 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 0 gr(z', z'') -{ 1 }-> gr(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 gr(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' - 1 >= 0 gr(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> 0 :|: z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 Function symbols to be analyzed: {p}, {gr}, {cond2,cond1} Previous analysis results are: p: runtime: ?, size: O(n^1) [z'] ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: p after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: cond1(z', z'', z1, z2) -{ 2 }-> cond2(gr(z1 - 1, z2 - 1), z'', 1 + (z1 - 1), 1 + (z2 - 1)) :|: z'' >= 0, z2 - 1 >= 0, z' = 1, z1 - 1 >= 0 cond1(z', z'', z1, z2) -{ 2 }-> cond2(1, z'', 1 + (z1 - 1), 0) :|: z2 = 0, z'' >= 0, z1 - 1 >= 0, z' = 1 cond1(z', z'', z1, z2) -{ 2 }-> cond2(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 1 cond2(z', z'', z1, z2) -{ 3 }-> cond2(gr(z1 - 1, z2 - 1), z'', z1 - 1, 1 + (z2 - 1)) :|: z'' >= 0, z2 - 1 >= 0, z' = 1, z1 - 1 >= 0 cond2(z', z'', z1, z2) -{ 3 }-> cond2(1, z'', z1 - 1, 0) :|: z1 - 1 >= 0, z2 = 0, z'' >= 0, z' = 1 cond2(z', z'', z1, z2) -{ 3 }-> cond2(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 1 cond2(z', z'', z1, z2) -{ 3 }-> cond1(gr(z'' - 1, z2 - 1), z'' - 1, z1, 1 + (z2 - 1)) :|: z2 - 1 >= 0, z'' - 1 >= 0, z1 >= 0, z' = 0 cond2(z', z'', z1, z2) -{ 3 }-> cond1(1, z'' - 1, z1, 0) :|: z2 = 0, z1 >= 0, z'' - 1 >= 0, z' = 0 cond2(z', z'', z1, z2) -{ 3 }-> cond1(0, 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 0 gr(z', z'') -{ 1 }-> gr(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 gr(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' - 1 >= 0 gr(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> 0 :|: z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 Function symbols to be analyzed: {gr}, {cond2,cond1} Previous analysis results are: p: runtime: O(1) [1], size: O(n^1) [z'] ---------------------------------------- (21) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: cond1(z', z'', z1, z2) -{ 2 }-> cond2(gr(z1 - 1, z2 - 1), z'', 1 + (z1 - 1), 1 + (z2 - 1)) :|: z'' >= 0, z2 - 1 >= 0, z' = 1, z1 - 1 >= 0 cond1(z', z'', z1, z2) -{ 2 }-> cond2(1, z'', 1 + (z1 - 1), 0) :|: z2 = 0, z'' >= 0, z1 - 1 >= 0, z' = 1 cond1(z', z'', z1, z2) -{ 2 }-> cond2(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 1 cond2(z', z'', z1, z2) -{ 3 }-> cond2(gr(z1 - 1, z2 - 1), z'', z1 - 1, 1 + (z2 - 1)) :|: z'' >= 0, z2 - 1 >= 0, z' = 1, z1 - 1 >= 0 cond2(z', z'', z1, z2) -{ 3 }-> cond2(1, z'', z1 - 1, 0) :|: z1 - 1 >= 0, z2 = 0, z'' >= 0, z' = 1 cond2(z', z'', z1, z2) -{ 3 }-> cond2(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 1 cond2(z', z'', z1, z2) -{ 3 }-> cond1(gr(z'' - 1, z2 - 1), z'' - 1, z1, 1 + (z2 - 1)) :|: z2 - 1 >= 0, z'' - 1 >= 0, z1 >= 0, z' = 0 cond2(z', z'', z1, z2) -{ 3 }-> cond1(1, z'' - 1, z1, 0) :|: z2 = 0, z1 >= 0, z'' - 1 >= 0, z' = 0 cond2(z', z'', z1, z2) -{ 3 }-> cond1(0, 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 0 gr(z', z'') -{ 1 }-> gr(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 gr(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' - 1 >= 0 gr(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> 0 :|: z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 Function symbols to be analyzed: {gr}, {cond2,cond1} Previous analysis results are: p: runtime: O(1) [1], size: O(n^1) [z'] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: gr after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: cond1(z', z'', z1, z2) -{ 2 }-> cond2(gr(z1 - 1, z2 - 1), z'', 1 + (z1 - 1), 1 + (z2 - 1)) :|: z'' >= 0, z2 - 1 >= 0, z' = 1, z1 - 1 >= 0 cond1(z', z'', z1, z2) -{ 2 }-> cond2(1, z'', 1 + (z1 - 1), 0) :|: z2 = 0, z'' >= 0, z1 - 1 >= 0, z' = 1 cond1(z', z'', z1, z2) -{ 2 }-> cond2(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 1 cond2(z', z'', z1, z2) -{ 3 }-> cond2(gr(z1 - 1, z2 - 1), z'', z1 - 1, 1 + (z2 - 1)) :|: z'' >= 0, z2 - 1 >= 0, z' = 1, z1 - 1 >= 0 cond2(z', z'', z1, z2) -{ 3 }-> cond2(1, z'', z1 - 1, 0) :|: z1 - 1 >= 0, z2 = 0, z'' >= 0, z' = 1 cond2(z', z'', z1, z2) -{ 3 }-> cond2(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 1 cond2(z', z'', z1, z2) -{ 3 }-> cond1(gr(z'' - 1, z2 - 1), z'' - 1, z1, 1 + (z2 - 1)) :|: z2 - 1 >= 0, z'' - 1 >= 0, z1 >= 0, z' = 0 cond2(z', z'', z1, z2) -{ 3 }-> cond1(1, z'' - 1, z1, 0) :|: z2 = 0, z1 >= 0, z'' - 1 >= 0, z' = 0 cond2(z', z'', z1, z2) -{ 3 }-> cond1(0, 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 0 gr(z', z'') -{ 1 }-> gr(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 gr(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' - 1 >= 0 gr(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> 0 :|: z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 Function symbols to be analyzed: {gr}, {cond2,cond1} Previous analysis results are: p: runtime: O(1) [1], size: O(n^1) [z'] gr: runtime: ?, size: O(1) [1] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: gr after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z'' ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: cond1(z', z'', z1, z2) -{ 2 }-> cond2(gr(z1 - 1, z2 - 1), z'', 1 + (z1 - 1), 1 + (z2 - 1)) :|: z'' >= 0, z2 - 1 >= 0, z' = 1, z1 - 1 >= 0 cond1(z', z'', z1, z2) -{ 2 }-> cond2(1, z'', 1 + (z1 - 1), 0) :|: z2 = 0, z'' >= 0, z1 - 1 >= 0, z' = 1 cond1(z', z'', z1, z2) -{ 2 }-> cond2(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 1 cond2(z', z'', z1, z2) -{ 3 }-> cond2(gr(z1 - 1, z2 - 1), z'', z1 - 1, 1 + (z2 - 1)) :|: z'' >= 0, z2 - 1 >= 0, z' = 1, z1 - 1 >= 0 cond2(z', z'', z1, z2) -{ 3 }-> cond2(1, z'', z1 - 1, 0) :|: z1 - 1 >= 0, z2 = 0, z'' >= 0, z' = 1 cond2(z', z'', z1, z2) -{ 3 }-> cond2(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 1 cond2(z', z'', z1, z2) -{ 3 }-> cond1(gr(z'' - 1, z2 - 1), z'' - 1, z1, 1 + (z2 - 1)) :|: z2 - 1 >= 0, z'' - 1 >= 0, z1 >= 0, z' = 0 cond2(z', z'', z1, z2) -{ 3 }-> cond1(1, z'' - 1, z1, 0) :|: z2 = 0, z1 >= 0, z'' - 1 >= 0, z' = 0 cond2(z', z'', z1, z2) -{ 3 }-> cond1(0, 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 0 gr(z', z'') -{ 1 }-> gr(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0 gr(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' - 1 >= 0 gr(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> 0 :|: z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 Function symbols to be analyzed: {cond2,cond1} Previous analysis results are: p: runtime: O(1) [1], size: O(n^1) [z'] gr: runtime: O(n^1) [2 + z''], size: O(1) [1] ---------------------------------------- (27) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: cond1(z', z'', z1, z2) -{ 3 + z2 }-> cond2(s, z'', 1 + (z1 - 1), 1 + (z2 - 1)) :|: s >= 0, s <= 1, z'' >= 0, z2 - 1 >= 0, z' = 1, z1 - 1 >= 0 cond1(z', z'', z1, z2) -{ 2 }-> cond2(1, z'', 1 + (z1 - 1), 0) :|: z2 = 0, z'' >= 0, z1 - 1 >= 0, z' = 1 cond1(z', z'', z1, z2) -{ 2 }-> cond2(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 1 cond2(z', z'', z1, z2) -{ 4 + z2 }-> cond2(s', z'', z1 - 1, 1 + (z2 - 1)) :|: s' >= 0, s' <= 1, z'' >= 0, z2 - 1 >= 0, z' = 1, z1 - 1 >= 0 cond2(z', z'', z1, z2) -{ 3 }-> cond2(1, z'', z1 - 1, 0) :|: z1 - 1 >= 0, z2 = 0, z'' >= 0, z' = 1 cond2(z', z'', z1, z2) -{ 3 }-> cond2(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 1 cond2(z', z'', z1, z2) -{ 4 + z2 }-> cond1(s'', z'' - 1, z1, 1 + (z2 - 1)) :|: s'' >= 0, s'' <= 1, z2 - 1 >= 0, z'' - 1 >= 0, z1 >= 0, z' = 0 cond2(z', z'', z1, z2) -{ 3 }-> cond1(1, z'' - 1, z1, 0) :|: z2 = 0, z1 >= 0, z'' - 1 >= 0, z' = 0 cond2(z', z'', z1, z2) -{ 3 }-> cond1(0, 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 0 gr(z', z'') -{ 2 + z'' }-> s1 :|: s1 >= 0, s1 <= 1, z' - 1 >= 0, z'' - 1 >= 0 gr(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' - 1 >= 0 gr(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> 0 :|: z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 Function symbols to be analyzed: {cond2,cond1} Previous analysis results are: p: runtime: O(1) [1], size: O(n^1) [z'] gr: runtime: O(n^1) [2 + z''], size: O(1) [1] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: cond2 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 Computed SIZE bound using CoFloCo for: cond1 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: cond1(z', z'', z1, z2) -{ 3 + z2 }-> cond2(s, z'', 1 + (z1 - 1), 1 + (z2 - 1)) :|: s >= 0, s <= 1, z'' >= 0, z2 - 1 >= 0, z' = 1, z1 - 1 >= 0 cond1(z', z'', z1, z2) -{ 2 }-> cond2(1, z'', 1 + (z1 - 1), 0) :|: z2 = 0, z'' >= 0, z1 - 1 >= 0, z' = 1 cond1(z', z'', z1, z2) -{ 2 }-> cond2(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 1 cond2(z', z'', z1, z2) -{ 4 + z2 }-> cond2(s', z'', z1 - 1, 1 + (z2 - 1)) :|: s' >= 0, s' <= 1, z'' >= 0, z2 - 1 >= 0, z' = 1, z1 - 1 >= 0 cond2(z', z'', z1, z2) -{ 3 }-> cond2(1, z'', z1 - 1, 0) :|: z1 - 1 >= 0, z2 = 0, z'' >= 0, z' = 1 cond2(z', z'', z1, z2) -{ 3 }-> cond2(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 1 cond2(z', z'', z1, z2) -{ 4 + z2 }-> cond1(s'', z'' - 1, z1, 1 + (z2 - 1)) :|: s'' >= 0, s'' <= 1, z2 - 1 >= 0, z'' - 1 >= 0, z1 >= 0, z' = 0 cond2(z', z'', z1, z2) -{ 3 }-> cond1(1, z'' - 1, z1, 0) :|: z2 = 0, z1 >= 0, z'' - 1 >= 0, z' = 0 cond2(z', z'', z1, z2) -{ 3 }-> cond1(0, 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 0 gr(z', z'') -{ 2 + z'' }-> s1 :|: s1 >= 0, s1 <= 1, z' - 1 >= 0, z'' - 1 >= 0 gr(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' - 1 >= 0 gr(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> 0 :|: z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 Function symbols to be analyzed: {cond2,cond1} Previous analysis results are: p: runtime: O(1) [1], size: O(n^1) [z'] gr: runtime: O(n^1) [2 + z''], size: O(1) [1] cond2: runtime: ?, size: O(1) [0] cond1: runtime: ?, size: O(1) [0] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: cond2 after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 21 + 7*z'' + 2*z''*z2 + 11*z1 + 3*z1*z2 + 3*z2 Computed RUNTIME bound using KoAT for: cond1 after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 70 + 21*z'' + 4*z''*z2 + 22*z1 + 3*z1*z2 + 7*z2 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: cond1(z', z'', z1, z2) -{ 3 + z2 }-> cond2(s, z'', 1 + (z1 - 1), 1 + (z2 - 1)) :|: s >= 0, s <= 1, z'' >= 0, z2 - 1 >= 0, z' = 1, z1 - 1 >= 0 cond1(z', z'', z1, z2) -{ 2 }-> cond2(1, z'', 1 + (z1 - 1), 0) :|: z2 = 0, z'' >= 0, z1 - 1 >= 0, z' = 1 cond1(z', z'', z1, z2) -{ 2 }-> cond2(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 1 cond2(z', z'', z1, z2) -{ 4 + z2 }-> cond2(s', z'', z1 - 1, 1 + (z2 - 1)) :|: s' >= 0, s' <= 1, z'' >= 0, z2 - 1 >= 0, z' = 1, z1 - 1 >= 0 cond2(z', z'', z1, z2) -{ 3 }-> cond2(1, z'', z1 - 1, 0) :|: z1 - 1 >= 0, z2 = 0, z'' >= 0, z' = 1 cond2(z', z'', z1, z2) -{ 3 }-> cond2(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 1 cond2(z', z'', z1, z2) -{ 4 + z2 }-> cond1(s'', z'' - 1, z1, 1 + (z2 - 1)) :|: s'' >= 0, s'' <= 1, z2 - 1 >= 0, z'' - 1 >= 0, z1 >= 0, z' = 0 cond2(z', z'', z1, z2) -{ 3 }-> cond1(1, z'' - 1, z1, 0) :|: z2 = 0, z1 >= 0, z'' - 1 >= 0, z' = 0 cond2(z', z'', z1, z2) -{ 3 }-> cond1(0, 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 0 gr(z', z'') -{ 2 + z'' }-> s1 :|: s1 >= 0, s1 <= 1, z' - 1 >= 0, z'' - 1 >= 0 gr(z', z'') -{ 1 }-> 1 :|: z'' = 0, z' - 1 >= 0 gr(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 p(z') -{ 1 }-> 0 :|: z' = 0 p(z') -{ 1 }-> z' - 1 :|: z' - 1 >= 0 Function symbols to be analyzed: Previous analysis results are: p: runtime: O(1) [1], size: O(n^1) [z'] gr: runtime: O(n^1) [2 + z''], size: O(1) [1] cond2: runtime: O(n^2) [21 + 7*z'' + 2*z''*z2 + 11*z1 + 3*z1*z2 + 3*z2], size: O(1) [0] cond1: runtime: O(n^2) [70 + 21*z'' + 4*z''*z2 + 22*z1 + 3*z1*z2 + 7*z2], size: O(1) [0] ---------------------------------------- (33) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (34) BOUNDS(1, n^2) ---------------------------------------- (35) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (36) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: cond1(true, x, y, z) -> cond2(gr(y, z), x, y, z) cond2(true, x, y, z) -> cond2(gr(y, z), x, p(y), z) cond2(false, x, y, z) -> cond1(gr(x, z), p(x), y, z) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) p(0') -> 0' p(s(x)) -> x S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (37) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (38) Obligation: Innermost TRS: Rules: cond1(true, x, y, z) -> cond2(gr(y, z), x, y, z) cond2(true, x, y, z) -> cond2(gr(y, z), x, p(y), z) cond2(false, x, y, z) -> cond1(gr(x, z), p(x), y, z) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) p(0') -> 0' p(s(x)) -> x Types: cond1 :: true:false -> 0':s -> 0':s -> 0':s -> cond1:cond2 true :: true:false cond2 :: true:false -> 0':s -> 0':s -> 0':s -> cond1:cond2 gr :: 0':s -> 0':s -> true:false p :: 0':s -> 0':s false :: true:false 0' :: 0':s s :: 0':s -> 0':s hole_cond1:cond21_0 :: cond1:cond2 hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s ---------------------------------------- (39) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: cond1, cond2, gr They will be analysed ascendingly in the following order: cond1 = cond2 gr < cond1 gr < cond2 ---------------------------------------- (40) Obligation: Innermost TRS: Rules: cond1(true, x, y, z) -> cond2(gr(y, z), x, y, z) cond2(true, x, y, z) -> cond2(gr(y, z), x, p(y), z) cond2(false, x, y, z) -> cond1(gr(x, z), p(x), y, z) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) p(0') -> 0' p(s(x)) -> x Types: cond1 :: true:false -> 0':s -> 0':s -> 0':s -> cond1:cond2 true :: true:false cond2 :: true:false -> 0':s -> 0':s -> 0':s -> cond1:cond2 gr :: 0':s -> 0':s -> true:false p :: 0':s -> 0':s false :: true:false 0' :: 0':s s :: 0':s -> 0':s hole_cond1:cond21_0 :: cond1:cond2 hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: gr, cond1, cond2 They will be analysed ascendingly in the following order: cond1 = cond2 gr < cond1 gr < cond2 ---------------------------------------- (41) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) -> false, rt in Omega(1 + n6_0) Induction Base: gr(gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) false Induction Step: gr(gen_0':s4_0(+(n6_0, 1)), gen_0':s4_0(+(n6_0, 1))) ->_R^Omega(1) gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) ->_IH false We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (42) Complex Obligation (BEST) ---------------------------------------- (43) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: cond1(true, x, y, z) -> cond2(gr(y, z), x, y, z) cond2(true, x, y, z) -> cond2(gr(y, z), x, p(y), z) cond2(false, x, y, z) -> cond1(gr(x, z), p(x), y, z) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) p(0') -> 0' p(s(x)) -> x Types: cond1 :: true:false -> 0':s -> 0':s -> 0':s -> cond1:cond2 true :: true:false cond2 :: true:false -> 0':s -> 0':s -> 0':s -> cond1:cond2 gr :: 0':s -> 0':s -> true:false p :: 0':s -> 0':s false :: true:false 0' :: 0':s s :: 0':s -> 0':s hole_cond1:cond21_0 :: cond1:cond2 hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: gr, cond1, cond2 They will be analysed ascendingly in the following order: cond1 = cond2 gr < cond1 gr < cond2 ---------------------------------------- (44) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (45) BOUNDS(n^1, INF) ---------------------------------------- (46) Obligation: Innermost TRS: Rules: cond1(true, x, y, z) -> cond2(gr(y, z), x, y, z) cond2(true, x, y, z) -> cond2(gr(y, z), x, p(y), z) cond2(false, x, y, z) -> cond1(gr(x, z), p(x), y, z) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) p(0') -> 0' p(s(x)) -> x Types: cond1 :: true:false -> 0':s -> 0':s -> 0':s -> cond1:cond2 true :: true:false cond2 :: true:false -> 0':s -> 0':s -> 0':s -> cond1:cond2 gr :: 0':s -> 0':s -> true:false p :: 0':s -> 0':s false :: true:false 0' :: 0':s s :: 0':s -> 0':s hole_cond1:cond21_0 :: cond1:cond2 hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s Lemmas: gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) -> false, rt in Omega(1 + n6_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: cond2, cond1 They will be analysed ascendingly in the following order: cond1 = cond2