/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) NarrowingProof [BOTH BOUNDS(ID, ID), 3 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (10) CpxRNTS (11) InliningProof [UPPER BOUND(ID), 1564 ms] (12) CpxRNTS (13) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 262 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 78 ms] (22) CpxRNTS (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 131 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (28) CpxRNTS (29) ResultPropagationProof [UPPER BOUND(ID), 2 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 272 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 84 ms] (34) CpxRNTS (35) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 238 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 105 ms] (40) CpxRNTS (41) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 1555 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 1532 ms] (46) CpxRNTS (47) FinalProof [FINISHED, 0 ms] (48) BOUNDS(1, n^2) (49) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (50) CpxTRS (51) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (52) typed CpxTrs (53) OrderProof [LOWER BOUND(ID), 0 ms] (54) typed CpxTrs (55) RewriteLemmaProof [LOWER BOUND(ID), 246 ms] (56) BEST (57) proven lower bound (58) LowerBoundPropagationProof [FINISHED, 0 ms] (59) BOUNDS(n^1, INF) (60) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: cond(true, x) -> cond(and(even(x), gr(x, 0)), p(x)) and(x, false) -> false and(false, x) -> false and(true, true) -> true even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) p(0) -> 0 p(s(x)) -> x S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: cond(true, x) -> cond(and(even(x), gr(x, 0)), p(x)) [1] and(x, false) -> false [1] and(false, x) -> false [1] and(true, true) -> true [1] even(0) -> true [1] even(s(0)) -> false [1] even(s(s(x))) -> even(x) [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] p(0) -> 0 [1] p(s(x)) -> x [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond(true, x) -> cond(and(even(x), gr(x, 0)), p(x)) [1] and(x, false) -> false [1] and(false, x) -> false [1] and(true, true) -> true [1] even(0) -> true [1] even(s(0)) -> false [1] even(s(s(x))) -> even(x) [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] p(0) -> 0 [1] p(s(x)) -> x [1] The TRS has the following type information: cond :: true:false -> 0:s:y -> cond true :: true:false and :: true:false -> true:false -> true:false even :: 0:s:y -> true:false gr :: 0:s:y -> 0:s:y -> true:false 0 :: 0:s:y p :: 0:s:y -> 0:s:y false :: true:false s :: 0:s:y -> 0:s:y y :: 0:s:y Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: cond_2 (c) The following functions are completely defined: and_2 even_1 gr_2 p_1 Due to the following rules being added: even(v0) -> null_even [0] gr(v0, v1) -> null_gr [0] p(v0) -> null_p [0] and(v0, v1) -> null_and [0] And the following fresh constants: null_even, null_gr, null_p, null_and, const ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond(true, x) -> cond(and(even(x), gr(x, 0)), p(x)) [1] and(x, false) -> false [1] and(false, x) -> false [1] and(true, true) -> true [1] even(0) -> true [1] even(s(0)) -> false [1] even(s(s(x))) -> even(x) [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] p(0) -> 0 [1] p(s(x)) -> x [1] even(v0) -> null_even [0] gr(v0, v1) -> null_gr [0] p(v0) -> null_p [0] and(v0, v1) -> null_and [0] The TRS has the following type information: cond :: true:false:null_even:null_gr:null_and -> 0:s:y:null_p -> cond true :: true:false:null_even:null_gr:null_and and :: true:false:null_even:null_gr:null_and -> true:false:null_even:null_gr:null_and -> true:false:null_even:null_gr:null_and even :: 0:s:y:null_p -> true:false:null_even:null_gr:null_and gr :: 0:s:y:null_p -> 0:s:y:null_p -> true:false:null_even:null_gr:null_and 0 :: 0:s:y:null_p p :: 0:s:y:null_p -> 0:s:y:null_p false :: true:false:null_even:null_gr:null_and s :: 0:s:y:null_p -> 0:s:y:null_p y :: 0:s:y:null_p null_even :: true:false:null_even:null_gr:null_and null_gr :: true:false:null_even:null_gr:null_and null_p :: 0:s:y:null_p null_and :: true:false:null_even:null_gr:null_and const :: cond Rewrite Strategy: INNERMOST ---------------------------------------- (7) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond(true, 0) -> cond(and(true, false), 0) [4] cond(true, 0) -> cond(and(true, false), null_p) [3] cond(true, 0) -> cond(and(true, null_gr), 0) [3] cond(true, 0) -> cond(and(true, null_gr), null_p) [2] cond(true, s(0)) -> cond(and(false, true), 0) [4] cond(true, s(0)) -> cond(and(false, true), null_p) [3] cond(true, s(0)) -> cond(and(false, null_gr), 0) [3] cond(true, s(0)) -> cond(and(false, null_gr), null_p) [2] cond(true, s(s(x'))) -> cond(and(even(x'), true), s(x')) [4] cond(true, s(s(x'))) -> cond(and(even(x'), true), null_p) [3] cond(true, s(s(x'))) -> cond(and(even(x'), null_gr), s(x')) [3] cond(true, s(s(x'))) -> cond(and(even(x'), null_gr), null_p) [2] cond(true, 0) -> cond(and(null_even, false), 0) [3] cond(true, 0) -> cond(and(null_even, false), null_p) [2] cond(true, s(x'')) -> cond(and(null_even, true), x'') [3] cond(true, s(x'')) -> cond(and(null_even, true), null_p) [2] cond(true, 0) -> cond(and(null_even, null_gr), 0) [2] cond(true, s(x1)) -> cond(and(null_even, null_gr), x1) [2] cond(true, x) -> cond(and(null_even, null_gr), null_p) [1] and(x, false) -> false [1] and(false, x) -> false [1] and(true, true) -> true [1] even(0) -> true [1] even(s(0)) -> false [1] even(s(s(x))) -> even(x) [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] p(0) -> 0 [1] p(s(x)) -> x [1] even(v0) -> null_even [0] gr(v0, v1) -> null_gr [0] p(v0) -> null_p [0] and(v0, v1) -> null_and [0] The TRS has the following type information: cond :: true:false:null_even:null_gr:null_and -> 0:s:y:null_p -> cond true :: true:false:null_even:null_gr:null_and and :: true:false:null_even:null_gr:null_and -> true:false:null_even:null_gr:null_and -> true:false:null_even:null_gr:null_and even :: 0:s:y:null_p -> true:false:null_even:null_gr:null_and gr :: 0:s:y:null_p -> 0:s:y:null_p -> true:false:null_even:null_gr:null_and 0 :: 0:s:y:null_p p :: 0:s:y:null_p -> 0:s:y:null_p false :: true:false:null_even:null_gr:null_and s :: 0:s:y:null_p -> 0:s:y:null_p y :: 0:s:y:null_p null_even :: true:false:null_even:null_gr:null_and null_gr :: true:false:null_even:null_gr:null_and null_p :: 0:s:y:null_p null_and :: true:false:null_even:null_gr:null_and const :: cond Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: true => 2 0 => 0 false => 1 y => 1 null_even => 0 null_gr => 0 null_p => 0 null_and => 0 const => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 2 :|: z = 2, z' = 2 and(z, z') -{ 1 }-> 1 :|: x >= 0, z' = 1, z = x and(z, z') -{ 1 }-> 1 :|: z' = x, z = 1, x >= 0 and(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 cond(z, z') -{ 3 }-> cond(and(even(x'), 2), 0) :|: z = 2, z' = 1 + (1 + x'), x' >= 0 cond(z, z') -{ 4 }-> cond(and(even(x'), 2), 1 + x') :|: z = 2, z' = 1 + (1 + x'), x' >= 0 cond(z, z') -{ 2 }-> cond(and(even(x'), 0), 0) :|: z = 2, z' = 1 + (1 + x'), x' >= 0 cond(z, z') -{ 3 }-> cond(and(even(x'), 0), 1 + x') :|: z = 2, z' = 1 + (1 + x'), x' >= 0 cond(z, z') -{ 4 }-> cond(and(2, 1), 0) :|: z = 2, z' = 0 cond(z, z') -{ 3 }-> cond(and(2, 1), 0) :|: z = 2, z' = 0 cond(z, z') -{ 3 }-> cond(and(2, 0), 0) :|: z = 2, z' = 0 cond(z, z') -{ 2 }-> cond(and(2, 0), 0) :|: z = 2, z' = 0 cond(z, z') -{ 4 }-> cond(and(1, 2), 0) :|: z = 2, z' = 1 + 0 cond(z, z') -{ 3 }-> cond(and(1, 2), 0) :|: z = 2, z' = 1 + 0 cond(z, z') -{ 3 }-> cond(and(1, 0), 0) :|: z = 2, z' = 1 + 0 cond(z, z') -{ 2 }-> cond(and(1, 0), 0) :|: z = 2, z' = 1 + 0 cond(z, z') -{ 3 }-> cond(and(0, 2), x'') :|: z = 2, z' = 1 + x'', x'' >= 0 cond(z, z') -{ 2 }-> cond(and(0, 2), 0) :|: z = 2, z' = 1 + x'', x'' >= 0 cond(z, z') -{ 3 }-> cond(and(0, 1), 0) :|: z = 2, z' = 0 cond(z, z') -{ 2 }-> cond(and(0, 1), 0) :|: z = 2, z' = 0 cond(z, z') -{ 2 }-> cond(and(0, 0), x1) :|: z = 2, x1 >= 0, z' = 1 + x1 cond(z, z') -{ 2 }-> cond(and(0, 0), 0) :|: z = 2, z' = 0 cond(z, z') -{ 1 }-> cond(and(0, 0), 0) :|: z = 2, z' = x, x >= 0 even(z) -{ 1 }-> even(x) :|: x >= 0, z = 1 + (1 + x) even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 gr(z, z') -{ 1 }-> gr(x, 1) :|: z' = 1 + 1, x >= 0, z = 1 + x gr(z, z') -{ 1 }-> 2 :|: x >= 0, z = 1 + x, z' = 0 gr(z, z') -{ 1 }-> 1 :|: z' = x, x >= 0, z = 0 gr(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 ---------------------------------------- (11) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: and(z, z') -{ 1 }-> 2 :|: z = 2, z' = 2 and(z, z') -{ 1 }-> 1 :|: x >= 0, z' = 1, z = x and(z, z') -{ 1 }-> 1 :|: z' = x, z = 1, x >= 0 and(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 2 :|: z = 2, z' = 2 and(z, z') -{ 1 }-> 1 :|: x >= 0, z' = 1, z = x and(z, z') -{ 1 }-> 1 :|: z' = x, z = 1, x >= 0 and(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 cond(z, z') -{ 3 }-> cond(and(even(x'), 2), 0) :|: z = 2, z' = 1 + (1 + x'), x' >= 0 cond(z, z') -{ 4 }-> cond(and(even(x'), 2), 1 + x') :|: z = 2, z' = 1 + (1 + x'), x' >= 0 cond(z, z') -{ 2 }-> cond(and(even(x'), 0), 0) :|: z = 2, z' = 1 + (1 + x'), x' >= 0 cond(z, z') -{ 3 }-> cond(and(even(x'), 0), 1 + x') :|: z = 2, z' = 1 + (1 + x'), x' >= 0 cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 3 }-> cond(0, x'') :|: z = 2, z' = 1 + x'', x'' >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, x1) :|: z = 2, x1 >= 0, z' = 1 + x1, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 1 + x'', x'' >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 1 }-> cond(0, 0) :|: z = 2, z' = x, x >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 even(z) -{ 1 }-> even(x) :|: x >= 0, z = 1 + (1 + x) even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 gr(z, z') -{ 1 }-> gr(x, 1) :|: z' = 1 + 1, x >= 0, z = 1 + x gr(z, z') -{ 1 }-> 2 :|: x >= 0, z = 1 + x, z' = 0 gr(z, z') -{ 1 }-> 1 :|: z' = x, x >= 0, z = 0 gr(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 ---------------------------------------- (13) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 2 :|: z = 2, z' = 2 and(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 and(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cond(z, z') -{ 3 }-> cond(and(even(z' - 2), 2), 0) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 4 }-> cond(and(even(z' - 2), 2), 1 + (z' - 2)) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 2 }-> cond(and(even(z' - 2), 0), 0) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(and(even(z' - 2), 0), 1 + (z' - 2)) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 1 }-> cond(0, 0) :|: z = 2, z' >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 even(z) -{ 1 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 gr(z, z') -{ 1 }-> gr(z - 1, 1) :|: z' = 1 + 1, z - 1 >= 0 gr(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 gr(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 ---------------------------------------- (15) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { and } { p } { gr } { even } { cond } ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 2 :|: z = 2, z' = 2 and(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 and(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cond(z, z') -{ 3 }-> cond(and(even(z' - 2), 2), 0) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 4 }-> cond(and(even(z' - 2), 2), 1 + (z' - 2)) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 2 }-> cond(and(even(z' - 2), 0), 0) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(and(even(z' - 2), 0), 1 + (z' - 2)) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 1 }-> cond(0, 0) :|: z = 2, z' >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 even(z) -{ 1 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 gr(z, z') -{ 1 }-> gr(z - 1, 1) :|: z' = 1 + 1, z - 1 >= 0 gr(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 gr(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {and}, {p}, {gr}, {even}, {cond} ---------------------------------------- (17) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 2 :|: z = 2, z' = 2 and(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 and(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cond(z, z') -{ 3 }-> cond(and(even(z' - 2), 2), 0) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 4 }-> cond(and(even(z' - 2), 2), 1 + (z' - 2)) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 2 }-> cond(and(even(z' - 2), 0), 0) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(and(even(z' - 2), 0), 1 + (z' - 2)) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 1 }-> cond(0, 0) :|: z = 2, z' >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 even(z) -{ 1 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 gr(z, z') -{ 1 }-> gr(z - 1, 1) :|: z' = 1 + 1, z - 1 >= 0 gr(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 gr(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {and}, {p}, {gr}, {even}, {cond} ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: and after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 2 :|: z = 2, z' = 2 and(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 and(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cond(z, z') -{ 3 }-> cond(and(even(z' - 2), 2), 0) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 4 }-> cond(and(even(z' - 2), 2), 1 + (z' - 2)) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 2 }-> cond(and(even(z' - 2), 0), 0) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(and(even(z' - 2), 0), 1 + (z' - 2)) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 1 }-> cond(0, 0) :|: z = 2, z' >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 even(z) -{ 1 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 gr(z, z') -{ 1 }-> gr(z - 1, 1) :|: z' = 1 + 1, z - 1 >= 0 gr(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 gr(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {and}, {p}, {gr}, {even}, {cond} Previous analysis results are: and: runtime: ?, size: O(1) [2] ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: and after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 2 :|: z = 2, z' = 2 and(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 and(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cond(z, z') -{ 3 }-> cond(and(even(z' - 2), 2), 0) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 4 }-> cond(and(even(z' - 2), 2), 1 + (z' - 2)) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 2 }-> cond(and(even(z' - 2), 0), 0) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(and(even(z' - 2), 0), 1 + (z' - 2)) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 1 }-> cond(0, 0) :|: z = 2, z' >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 even(z) -{ 1 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 gr(z, z') -{ 1 }-> gr(z - 1, 1) :|: z' = 1 + 1, z - 1 >= 0 gr(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 gr(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {gr}, {even}, {cond} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [2] ---------------------------------------- (23) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 2 :|: z = 2, z' = 2 and(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 and(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cond(z, z') -{ 3 }-> cond(and(even(z' - 2), 2), 0) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 4 }-> cond(and(even(z' - 2), 2), 1 + (z' - 2)) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 2 }-> cond(and(even(z' - 2), 0), 0) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(and(even(z' - 2), 0), 1 + (z' - 2)) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 1 }-> cond(0, 0) :|: z = 2, z' >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 even(z) -{ 1 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 gr(z, z') -{ 1 }-> gr(z - 1, 1) :|: z' = 1 + 1, z - 1 >= 0 gr(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 gr(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {gr}, {even}, {cond} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [2] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: p after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 2 :|: z = 2, z' = 2 and(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 and(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cond(z, z') -{ 3 }-> cond(and(even(z' - 2), 2), 0) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 4 }-> cond(and(even(z' - 2), 2), 1 + (z' - 2)) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 2 }-> cond(and(even(z' - 2), 0), 0) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(and(even(z' - 2), 0), 1 + (z' - 2)) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 1 }-> cond(0, 0) :|: z = 2, z' >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 even(z) -{ 1 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 gr(z, z') -{ 1 }-> gr(z - 1, 1) :|: z' = 1 + 1, z - 1 >= 0 gr(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 gr(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {gr}, {even}, {cond} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [2] p: runtime: ?, size: O(n^1) [z] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: p after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 2 :|: z = 2, z' = 2 and(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 and(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cond(z, z') -{ 3 }-> cond(and(even(z' - 2), 2), 0) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 4 }-> cond(and(even(z' - 2), 2), 1 + (z' - 2)) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 2 }-> cond(and(even(z' - 2), 0), 0) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(and(even(z' - 2), 0), 1 + (z' - 2)) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 1 }-> cond(0, 0) :|: z = 2, z' >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 even(z) -{ 1 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 gr(z, z') -{ 1 }-> gr(z - 1, 1) :|: z' = 1 + 1, z - 1 >= 0 gr(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 gr(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {gr}, {even}, {cond} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [2] p: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (29) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 2 :|: z = 2, z' = 2 and(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 and(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cond(z, z') -{ 3 }-> cond(and(even(z' - 2), 2), 0) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 4 }-> cond(and(even(z' - 2), 2), 1 + (z' - 2)) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 2 }-> cond(and(even(z' - 2), 0), 0) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(and(even(z' - 2), 0), 1 + (z' - 2)) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 1 }-> cond(0, 0) :|: z = 2, z' >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 even(z) -{ 1 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 gr(z, z') -{ 1 }-> gr(z - 1, 1) :|: z' = 1 + 1, z - 1 >= 0 gr(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 gr(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {gr}, {even}, {cond} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [2] p: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: gr after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 2 :|: z = 2, z' = 2 and(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 and(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cond(z, z') -{ 3 }-> cond(and(even(z' - 2), 2), 0) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 4 }-> cond(and(even(z' - 2), 2), 1 + (z' - 2)) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 2 }-> cond(and(even(z' - 2), 0), 0) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(and(even(z' - 2), 0), 1 + (z' - 2)) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 1 }-> cond(0, 0) :|: z = 2, z' >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 even(z) -{ 1 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 gr(z, z') -{ 1 }-> gr(z - 1, 1) :|: z' = 1 + 1, z - 1 >= 0 gr(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 gr(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {gr}, {even}, {cond} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [2] p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: ?, size: O(1) [2] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: gr after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 2 :|: z = 2, z' = 2 and(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 and(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cond(z, z') -{ 3 }-> cond(and(even(z' - 2), 2), 0) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 4 }-> cond(and(even(z' - 2), 2), 1 + (z' - 2)) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 2 }-> cond(and(even(z' - 2), 0), 0) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(and(even(z' - 2), 0), 1 + (z' - 2)) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 1 }-> cond(0, 0) :|: z = 2, z' >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 even(z) -{ 1 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 gr(z, z') -{ 1 }-> gr(z - 1, 1) :|: z' = 1 + 1, z - 1 >= 0 gr(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 gr(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {even}, {cond} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [2] p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: O(1) [2], size: O(1) [2] ---------------------------------------- (35) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 2 :|: z = 2, z' = 2 and(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 and(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cond(z, z') -{ 3 }-> cond(and(even(z' - 2), 2), 0) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 4 }-> cond(and(even(z' - 2), 2), 1 + (z' - 2)) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 2 }-> cond(and(even(z' - 2), 0), 0) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(and(even(z' - 2), 0), 1 + (z' - 2)) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 1 }-> cond(0, 0) :|: z = 2, z' >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 even(z) -{ 1 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 gr(z, z') -{ 3 }-> s :|: s >= 0, s <= 2, z' = 1 + 1, z - 1 >= 0 gr(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 gr(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {even}, {cond} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [2] p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: O(1) [2], size: O(1) [2] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: even after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 2 :|: z = 2, z' = 2 and(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 and(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cond(z, z') -{ 3 }-> cond(and(even(z' - 2), 2), 0) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 4 }-> cond(and(even(z' - 2), 2), 1 + (z' - 2)) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 2 }-> cond(and(even(z' - 2), 0), 0) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(and(even(z' - 2), 0), 1 + (z' - 2)) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 1 }-> cond(0, 0) :|: z = 2, z' >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 even(z) -{ 1 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 gr(z, z') -{ 3 }-> s :|: s >= 0, s <= 2, z' = 1 + 1, z - 1 >= 0 gr(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 gr(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {even}, {cond} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [2] p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: O(1) [2], size: O(1) [2] even: runtime: ?, size: O(1) [2] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: even after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 2 :|: z = 2, z' = 2 and(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 and(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cond(z, z') -{ 3 }-> cond(and(even(z' - 2), 2), 0) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 4 }-> cond(and(even(z' - 2), 2), 1 + (z' - 2)) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 2 }-> cond(and(even(z' - 2), 0), 0) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(and(even(z' - 2), 0), 1 + (z' - 2)) :|: z = 2, z' - 2 >= 0 cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 1 }-> cond(0, 0) :|: z = 2, z' >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 even(z) -{ 1 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 gr(z, z') -{ 3 }-> s :|: s >= 0, s <= 2, z' = 1 + 1, z - 1 >= 0 gr(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 gr(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {cond} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [2] p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: O(1) [2], size: O(1) [2] even: runtime: O(n^1) [2 + z], size: O(1) [2] ---------------------------------------- (41) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 2 :|: z = 2, z' = 2 and(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 and(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cond(z, z') -{ 5 + z' }-> cond(s1, 1 + (z' - 2)) :|: s'' >= 0, s'' <= 2, s1 >= 0, s1 <= 2, z = 2, z' - 2 >= 0 cond(z, z') -{ 4 + z' }-> cond(s3, 0) :|: s2 >= 0, s2 <= 2, s3 >= 0, s3 <= 2, z = 2, z' - 2 >= 0 cond(z, z') -{ 4 + z' }-> cond(s5, 1 + (z' - 2)) :|: s4 >= 0, s4 <= 2, s5 >= 0, s5 <= 2, z = 2, z' - 2 >= 0 cond(z, z') -{ 3 + z' }-> cond(s7, 0) :|: s6 >= 0, s6 <= 2, s7 >= 0, s7 <= 2, z = 2, z' - 2 >= 0 cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 1 }-> cond(0, 0) :|: z = 2, z' >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 even(z) -{ 1 + z }-> s' :|: s' >= 0, s' <= 2, z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 gr(z, z') -{ 3 }-> s :|: s >= 0, s <= 2, z' = 1 + 1, z - 1 >= 0 gr(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 gr(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {cond} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [2] p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: O(1) [2], size: O(1) [2] even: runtime: O(n^1) [2 + z], size: O(1) [2] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: cond after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 2 :|: z = 2, z' = 2 and(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 and(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cond(z, z') -{ 5 + z' }-> cond(s1, 1 + (z' - 2)) :|: s'' >= 0, s'' <= 2, s1 >= 0, s1 <= 2, z = 2, z' - 2 >= 0 cond(z, z') -{ 4 + z' }-> cond(s3, 0) :|: s2 >= 0, s2 <= 2, s3 >= 0, s3 <= 2, z = 2, z' - 2 >= 0 cond(z, z') -{ 4 + z' }-> cond(s5, 1 + (z' - 2)) :|: s4 >= 0, s4 <= 2, s5 >= 0, s5 <= 2, z = 2, z' - 2 >= 0 cond(z, z') -{ 3 + z' }-> cond(s7, 0) :|: s6 >= 0, s6 <= 2, s7 >= 0, s7 <= 2, z = 2, z' - 2 >= 0 cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 1 }-> cond(0, 0) :|: z = 2, z' >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 even(z) -{ 1 + z }-> s' :|: s' >= 0, s' <= 2, z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 gr(z, z') -{ 3 }-> s :|: s >= 0, s <= 2, z' = 1 + 1, z - 1 >= 0 gr(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 gr(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {cond} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [2] p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: O(1) [2], size: O(1) [2] even: runtime: O(n^1) [2 + z], size: O(1) [2] cond: runtime: ?, size: O(1) [0] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: cond after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 25 + 9*z' + z'^2 ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 2 :|: z = 2, z' = 2 and(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 1 and(z, z') -{ 1 }-> 1 :|: z = 1, z' >= 0 and(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 cond(z, z') -{ 5 + z' }-> cond(s1, 1 + (z' - 2)) :|: s'' >= 0, s'' <= 2, s1 >= 0, s1 <= 2, z = 2, z' - 2 >= 0 cond(z, z') -{ 4 + z' }-> cond(s3, 0) :|: s2 >= 0, s2 <= 2, s3 >= 0, s3 <= 2, z = 2, z' - 2 >= 0 cond(z, z') -{ 4 + z' }-> cond(s5, 1 + (z' - 2)) :|: s4 >= 0, s4 <= 2, s5 >= 0, s5 <= 2, z = 2, z' - 2 >= 0 cond(z, z') -{ 3 + z' }-> cond(s7, 0) :|: s6 >= 0, s6 <= 2, s7 >= 0, s7 <= 2, z = 2, z' - 2 >= 0 cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 2 = x cond(z, z') -{ 5 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 2 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 1 + 0, 0 = x, 1 = 1, x >= 0 cond(z, z') -{ 4 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 2, z' = 0, x >= 0, 1 = 1, 0 = x cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 1 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 2 = v0, 0 = v1 cond(z, z') -{ 4 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 2 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 1 + 0, v0 >= 0, v1 >= 0, 1 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 1 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, 0) :|: z = 2, z' = 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 1 }-> cond(0, 0) :|: z = 2, z' >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 cond(z, z') -{ 3 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 2 = v1 cond(z, z') -{ 2 }-> cond(0, z' - 1) :|: z = 2, z' - 1 >= 0, v0 >= 0, v1 >= 0, 0 = v0, 0 = v1 even(z) -{ 1 + z }-> s' :|: s' >= 0, s' <= 2, z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 gr(z, z') -{ 3 }-> s :|: s >= 0, s <= 2, z' = 1 + 1, z - 1 >= 0 gr(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 gr(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: Previous analysis results are: and: runtime: O(1) [1], size: O(1) [2] p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: O(1) [2], size: O(1) [2] even: runtime: O(n^1) [2 + z], size: O(1) [2] cond: runtime: O(n^2) [25 + 9*z' + z'^2], size: O(1) [0] ---------------------------------------- (47) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (48) BOUNDS(1, n^2) ---------------------------------------- (49) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (50) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: cond(true, x) -> cond(and(even(x), gr(x, 0')), p(x)) and(x, false) -> false and(false, x) -> false and(true, true) -> true even(0') -> true even(s(0')) -> false even(s(s(x))) -> even(x) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) p(0') -> 0' p(s(x)) -> x S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (51) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (52) Obligation: Innermost TRS: Rules: cond(true, x) -> cond(and(even(x), gr(x, 0')), p(x)) and(x, false) -> false and(false, x) -> false and(true, true) -> true even(0') -> true even(s(0')) -> false even(s(s(x))) -> even(x) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) p(0') -> 0' p(s(x)) -> x Types: cond :: true:false -> 0':s:y -> cond true :: true:false and :: true:false -> true:false -> true:false even :: 0':s:y -> true:false gr :: 0':s:y -> 0':s:y -> true:false 0' :: 0':s:y p :: 0':s:y -> 0':s:y false :: true:false s :: 0':s:y -> 0':s:y y :: 0':s:y hole_cond1_0 :: cond hole_true:false2_0 :: true:false hole_0':s:y3_0 :: 0':s:y gen_0':s:y4_0 :: Nat -> 0':s:y ---------------------------------------- (53) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: cond, even, gr They will be analysed ascendingly in the following order: even < cond gr < cond ---------------------------------------- (54) Obligation: Innermost TRS: Rules: cond(true, x) -> cond(and(even(x), gr(x, 0')), p(x)) and(x, false) -> false and(false, x) -> false and(true, true) -> true even(0') -> true even(s(0')) -> false even(s(s(x))) -> even(x) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) p(0') -> 0' p(s(x)) -> x Types: cond :: true:false -> 0':s:y -> cond true :: true:false and :: true:false -> true:false -> true:false even :: 0':s:y -> true:false gr :: 0':s:y -> 0':s:y -> true:false 0' :: 0':s:y p :: 0':s:y -> 0':s:y false :: true:false s :: 0':s:y -> 0':s:y y :: 0':s:y hole_cond1_0 :: cond hole_true:false2_0 :: true:false hole_0':s:y3_0 :: 0':s:y gen_0':s:y4_0 :: Nat -> 0':s:y Generator Equations: gen_0':s:y4_0(0) <=> 0' gen_0':s:y4_0(+(x, 1)) <=> s(gen_0':s:y4_0(x)) The following defined symbols remain to be analysed: even, cond, gr They will be analysed ascendingly in the following order: even < cond gr < cond ---------------------------------------- (55) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: even(gen_0':s:y4_0(*(2, n6_0))) -> true, rt in Omega(1 + n6_0) Induction Base: even(gen_0':s:y4_0(*(2, 0))) ->_R^Omega(1) true Induction Step: even(gen_0':s:y4_0(*(2, +(n6_0, 1)))) ->_R^Omega(1) even(gen_0':s:y4_0(*(2, n6_0))) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (56) Complex Obligation (BEST) ---------------------------------------- (57) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: cond(true, x) -> cond(and(even(x), gr(x, 0')), p(x)) and(x, false) -> false and(false, x) -> false and(true, true) -> true even(0') -> true even(s(0')) -> false even(s(s(x))) -> even(x) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) p(0') -> 0' p(s(x)) -> x Types: cond :: true:false -> 0':s:y -> cond true :: true:false and :: true:false -> true:false -> true:false even :: 0':s:y -> true:false gr :: 0':s:y -> 0':s:y -> true:false 0' :: 0':s:y p :: 0':s:y -> 0':s:y false :: true:false s :: 0':s:y -> 0':s:y y :: 0':s:y hole_cond1_0 :: cond hole_true:false2_0 :: true:false hole_0':s:y3_0 :: 0':s:y gen_0':s:y4_0 :: Nat -> 0':s:y Generator Equations: gen_0':s:y4_0(0) <=> 0' gen_0':s:y4_0(+(x, 1)) <=> s(gen_0':s:y4_0(x)) The following defined symbols remain to be analysed: even, cond, gr They will be analysed ascendingly in the following order: even < cond gr < cond ---------------------------------------- (58) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (59) BOUNDS(n^1, INF) ---------------------------------------- (60) Obligation: Innermost TRS: Rules: cond(true, x) -> cond(and(even(x), gr(x, 0')), p(x)) and(x, false) -> false and(false, x) -> false and(true, true) -> true even(0') -> true even(s(0')) -> false even(s(s(x))) -> even(x) gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) p(0') -> 0' p(s(x)) -> x Types: cond :: true:false -> 0':s:y -> cond true :: true:false and :: true:false -> true:false -> true:false even :: 0':s:y -> true:false gr :: 0':s:y -> 0':s:y -> true:false 0' :: 0':s:y p :: 0':s:y -> 0':s:y false :: true:false s :: 0':s:y -> 0':s:y y :: 0':s:y hole_cond1_0 :: cond hole_true:false2_0 :: true:false hole_0':s:y3_0 :: 0':s:y gen_0':s:y4_0 :: Nat -> 0':s:y Lemmas: even(gen_0':s:y4_0(*(2, n6_0))) -> true, rt in Omega(1 + n6_0) Generator Equations: gen_0':s:y4_0(0) <=> 0' gen_0':s:y4_0(+(x, 1)) <=> s(gen_0':s:y4_0(x)) The following defined symbols remain to be analysed: gr, cond They will be analysed ascendingly in the following order: gr < cond