/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 1 ms] (10) CpxRNTS (11) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxRNTS (13) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 2 ms] (14) CpxRNTS (15) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) IntTrsBoundProof [UPPER BOUND(ID), 409 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 120 ms] (20) CpxRNTS (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 149 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 53 ms] (26) CpxRNTS (27) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 231 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 85 ms] (32) CpxRNTS (33) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 259 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 83 ms] (38) CpxRNTS (39) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 2022 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 2066 ms] (44) CpxRNTS (45) FinalProof [FINISHED, 0 ms] (46) BOUNDS(1, n^2) (47) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (48) CpxTRS (49) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (50) typed CpxTrs (51) OrderProof [LOWER BOUND(ID), 0 ms] (52) typed CpxTrs (53) RewriteLemmaProof [LOWER BOUND(ID), 226 ms] (54) BEST (55) proven lower bound (56) LowerBoundPropagationProof [FINISHED, 0 ms] (57) BOUNDS(n^1, INF) (58) typed CpxTrs (59) RewriteLemmaProof [LOWER BOUND(ID), 58 ms] (60) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: cond1(true, x) -> cond2(even(x), x) cond2(true, x) -> cond1(neq(x, 0), div2(x)) cond2(false, x) -> cond1(neq(x, 0), p(x)) neq(0, 0) -> false neq(0, s(x)) -> true neq(s(x), 0) -> true neq(s(x), s(y)) -> neq(x, y) even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) div2(0) -> 0 div2(s(0)) -> 0 div2(s(s(x))) -> s(div2(x)) p(0) -> 0 p(s(x)) -> x S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: cond1(true, x) -> cond2(even(x), x) [1] cond2(true, x) -> cond1(neq(x, 0), div2(x)) [1] cond2(false, x) -> cond1(neq(x, 0), p(x)) [1] neq(0, 0) -> false [1] neq(0, s(x)) -> true [1] neq(s(x), 0) -> true [1] neq(s(x), s(y)) -> neq(x, y) [1] even(0) -> true [1] even(s(0)) -> false [1] even(s(s(x))) -> even(x) [1] div2(0) -> 0 [1] div2(s(0)) -> 0 [1] div2(s(s(x))) -> s(div2(x)) [1] p(0) -> 0 [1] p(s(x)) -> x [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond1(true, x) -> cond2(even(x), x) [1] cond2(true, x) -> cond1(neq(x, 0), div2(x)) [1] cond2(false, x) -> cond1(neq(x, 0), p(x)) [1] neq(0, 0) -> false [1] neq(0, s(x)) -> true [1] neq(s(x), 0) -> true [1] neq(s(x), s(y)) -> neq(x, y) [1] even(0) -> true [1] even(s(0)) -> false [1] even(s(s(x))) -> even(x) [1] div2(0) -> 0 [1] div2(s(0)) -> 0 [1] div2(s(s(x))) -> s(div2(x)) [1] p(0) -> 0 [1] p(s(x)) -> x [1] The TRS has the following type information: cond1 :: true:false -> 0:s:y -> cond1:cond2 true :: true:false cond2 :: true:false -> 0:s:y -> cond1:cond2 even :: 0:s:y -> true:false neq :: 0:s:y -> 0:s:y -> true:false 0 :: 0:s:y div2 :: 0:s:y -> 0:s:y false :: true:false p :: 0:s:y -> 0:s:y s :: 0:s:y -> 0:s:y y :: 0:s:y Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: cond1_2 cond2_2 (c) The following functions are completely defined: neq_2 div2_1 p_1 even_1 Due to the following rules being added: neq(v0, v1) -> null_neq [0] div2(v0) -> null_div2 [0] p(v0) -> null_p [0] even(v0) -> null_even [0] And the following fresh constants: null_neq, null_div2, null_p, null_even, const ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond1(true, x) -> cond2(even(x), x) [1] cond2(true, x) -> cond1(neq(x, 0), div2(x)) [1] cond2(false, x) -> cond1(neq(x, 0), p(x)) [1] neq(0, 0) -> false [1] neq(0, s(x)) -> true [1] neq(s(x), 0) -> true [1] neq(s(x), s(y)) -> neq(x, y) [1] even(0) -> true [1] even(s(0)) -> false [1] even(s(s(x))) -> even(x) [1] div2(0) -> 0 [1] div2(s(0)) -> 0 [1] div2(s(s(x))) -> s(div2(x)) [1] p(0) -> 0 [1] p(s(x)) -> x [1] neq(v0, v1) -> null_neq [0] div2(v0) -> null_div2 [0] p(v0) -> null_p [0] even(v0) -> null_even [0] The TRS has the following type information: cond1 :: true:false:null_neq:null_even -> 0:s:y:null_div2:null_p -> cond1:cond2 true :: true:false:null_neq:null_even cond2 :: true:false:null_neq:null_even -> 0:s:y:null_div2:null_p -> cond1:cond2 even :: 0:s:y:null_div2:null_p -> true:false:null_neq:null_even neq :: 0:s:y:null_div2:null_p -> 0:s:y:null_div2:null_p -> true:false:null_neq:null_even 0 :: 0:s:y:null_div2:null_p div2 :: 0:s:y:null_div2:null_p -> 0:s:y:null_div2:null_p false :: true:false:null_neq:null_even p :: 0:s:y:null_div2:null_p -> 0:s:y:null_div2:null_p s :: 0:s:y:null_div2:null_p -> 0:s:y:null_div2:null_p y :: 0:s:y:null_div2:null_p null_neq :: true:false:null_neq:null_even null_div2 :: 0:s:y:null_div2:null_p null_p :: 0:s:y:null_div2:null_p null_even :: true:false:null_neq:null_even const :: cond1:cond2 Rewrite Strategy: INNERMOST ---------------------------------------- (7) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond1(true, 0) -> cond2(true, 0) [2] cond1(true, s(0)) -> cond2(false, s(0)) [2] cond1(true, s(s(x'))) -> cond2(even(x'), s(s(x'))) [2] cond1(true, x) -> cond2(null_even, x) [1] cond2(true, 0) -> cond1(false, 0) [3] cond2(true, 0) -> cond1(false, null_div2) [2] cond2(true, s(0)) -> cond1(true, 0) [3] cond2(true, s(s(x1))) -> cond1(true, s(div2(x1))) [3] cond2(true, s(x'')) -> cond1(true, null_div2) [2] cond2(true, 0) -> cond1(null_neq, 0) [2] cond2(true, s(0)) -> cond1(null_neq, 0) [2] cond2(true, s(s(x2))) -> cond1(null_neq, s(div2(x2))) [2] cond2(true, x) -> cond1(null_neq, null_div2) [1] cond2(false, 0) -> cond1(false, 0) [3] cond2(false, 0) -> cond1(false, null_p) [2] cond2(false, s(x3)) -> cond1(true, x3) [3] cond2(false, s(x3)) -> cond1(true, null_p) [2] cond2(false, 0) -> cond1(null_neq, 0) [2] cond2(false, s(x4)) -> cond1(null_neq, x4) [2] cond2(false, x) -> cond1(null_neq, null_p) [1] neq(0, 0) -> false [1] neq(0, s(x)) -> true [1] neq(s(x), 0) -> true [1] neq(s(x), s(y)) -> neq(x, y) [1] even(0) -> true [1] even(s(0)) -> false [1] even(s(s(x))) -> even(x) [1] div2(0) -> 0 [1] div2(s(0)) -> 0 [1] div2(s(s(x))) -> s(div2(x)) [1] p(0) -> 0 [1] p(s(x)) -> x [1] neq(v0, v1) -> null_neq [0] div2(v0) -> null_div2 [0] p(v0) -> null_p [0] even(v0) -> null_even [0] The TRS has the following type information: cond1 :: true:false:null_neq:null_even -> 0:s:y:null_div2:null_p -> cond1:cond2 true :: true:false:null_neq:null_even cond2 :: true:false:null_neq:null_even -> 0:s:y:null_div2:null_p -> cond1:cond2 even :: 0:s:y:null_div2:null_p -> true:false:null_neq:null_even neq :: 0:s:y:null_div2:null_p -> 0:s:y:null_div2:null_p -> true:false:null_neq:null_even 0 :: 0:s:y:null_div2:null_p div2 :: 0:s:y:null_div2:null_p -> 0:s:y:null_div2:null_p false :: true:false:null_neq:null_even p :: 0:s:y:null_div2:null_p -> 0:s:y:null_div2:null_p s :: 0:s:y:null_div2:null_p -> 0:s:y:null_div2:null_p y :: 0:s:y:null_div2:null_p null_neq :: true:false:null_neq:null_even null_div2 :: 0:s:y:null_div2:null_p null_p :: 0:s:y:null_div2:null_p null_even :: true:false:null_neq:null_even const :: cond1:cond2 Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: true => 2 0 => 0 false => 1 y => 1 null_neq => 0 null_div2 => 0 null_p => 0 null_even => 0 const => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z') -{ 2 }-> cond2(even(x'), 1 + (1 + x')) :|: z = 2, z' = 1 + (1 + x'), x' >= 0 cond1(z, z') -{ 2 }-> cond2(2, 0) :|: z = 2, z' = 0 cond1(z, z') -{ 2 }-> cond2(1, 1 + 0) :|: z = 2, z' = 1 + 0 cond1(z, z') -{ 1 }-> cond2(0, x) :|: z = 2, z' = x, x >= 0 cond2(z, z') -{ 3 }-> cond1(2, x3) :|: z = 1, z' = 1 + x3, x3 >= 0 cond2(z, z') -{ 3 }-> cond1(2, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 2, z' = 1 + x'', x'' >= 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 1, z' = 1 + x3, x3 >= 0 cond2(z, z') -{ 3 }-> cond1(2, 1 + div2(x1)) :|: z = 2, x1 >= 0, z' = 1 + (1 + x1) cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, x4) :|: x4 >= 0, z = 1, z' = 1 + x4 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 2, z' = x, x >= 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z' = x, z = 1, x >= 0 cond2(z, z') -{ 2 }-> cond1(0, 1 + div2(x2)) :|: z = 2, z' = 1 + (1 + x2), x2 >= 0 div2(z) -{ 1 }-> 0 :|: z = 0 div2(z) -{ 1 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 div2(z) -{ 1 }-> 1 + div2(x) :|: x >= 0, z = 1 + (1 + x) even(z) -{ 1 }-> even(x) :|: x >= 0, z = 1 + (1 + x) even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 neq(z, z') -{ 1 }-> neq(x, 1) :|: z' = 1 + 1, x >= 0, z = 1 + x neq(z, z') -{ 1 }-> 2 :|: z' = 1 + x, x >= 0, z = 0 neq(z, z') -{ 1 }-> 2 :|: x >= 0, z = 1 + x, z' = 0 neq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 ---------------------------------------- (11) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z') -{ 2 }-> cond2(even(z' - 2), 1 + (1 + (z' - 2))) :|: z = 2, z' - 2 >= 0 cond1(z, z') -{ 2 }-> cond2(2, 0) :|: z = 2, z' = 0 cond1(z, z') -{ 2 }-> cond2(1, 1 + 0) :|: z = 2, z' = 1 + 0 cond1(z, z') -{ 1 }-> cond2(0, z') :|: z = 2, z' >= 0 cond2(z, z') -{ 3 }-> cond1(2, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 2, z' - 1 >= 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 }-> cond1(2, z' - 1) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 }-> cond1(2, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 2, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 1, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, z' - 1) :|: z' - 1 >= 0, z = 1 cond2(z, z') -{ 2 }-> cond1(0, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 div2(z) -{ 1 }-> 0 :|: z = 0 div2(z) -{ 1 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 1 }-> 1 + div2(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 1 }-> neq(z - 1, 1) :|: z' = 1 + 1, z - 1 >= 0 neq(z, z') -{ 1 }-> 2 :|: z' - 1 >= 0, z = 0 neq(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 ---------------------------------------- (13) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { neq } { p } { div2 } { even } { cond2, cond1 } ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z') -{ 2 }-> cond2(even(z' - 2), 1 + (1 + (z' - 2))) :|: z = 2, z' - 2 >= 0 cond1(z, z') -{ 2 }-> cond2(2, 0) :|: z = 2, z' = 0 cond1(z, z') -{ 2 }-> cond2(1, 1 + 0) :|: z = 2, z' = 1 + 0 cond1(z, z') -{ 1 }-> cond2(0, z') :|: z = 2, z' >= 0 cond2(z, z') -{ 3 }-> cond1(2, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 2, z' - 1 >= 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 }-> cond1(2, z' - 1) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 }-> cond1(2, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 2, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 1, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, z' - 1) :|: z' - 1 >= 0, z = 1 cond2(z, z') -{ 2 }-> cond1(0, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 div2(z) -{ 1 }-> 0 :|: z = 0 div2(z) -{ 1 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 1 }-> 1 + div2(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 1 }-> neq(z - 1, 1) :|: z' = 1 + 1, z - 1 >= 0 neq(z, z') -{ 1 }-> 2 :|: z' - 1 >= 0, z = 0 neq(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {neq}, {p}, {div2}, {even}, {cond2,cond1} ---------------------------------------- (15) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z') -{ 2 }-> cond2(even(z' - 2), 1 + (1 + (z' - 2))) :|: z = 2, z' - 2 >= 0 cond1(z, z') -{ 2 }-> cond2(2, 0) :|: z = 2, z' = 0 cond1(z, z') -{ 2 }-> cond2(1, 1 + 0) :|: z = 2, z' = 1 + 0 cond1(z, z') -{ 1 }-> cond2(0, z') :|: z = 2, z' >= 0 cond2(z, z') -{ 3 }-> cond1(2, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 2, z' - 1 >= 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 }-> cond1(2, z' - 1) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 }-> cond1(2, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 2, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 1, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, z' - 1) :|: z' - 1 >= 0, z = 1 cond2(z, z') -{ 2 }-> cond1(0, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 div2(z) -{ 1 }-> 0 :|: z = 0 div2(z) -{ 1 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 1 }-> 1 + div2(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 1 }-> neq(z - 1, 1) :|: z' = 1 + 1, z - 1 >= 0 neq(z, z') -{ 1 }-> 2 :|: z' - 1 >= 0, z = 0 neq(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {neq}, {p}, {div2}, {even}, {cond2,cond1} ---------------------------------------- (17) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: neq after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z') -{ 2 }-> cond2(even(z' - 2), 1 + (1 + (z' - 2))) :|: z = 2, z' - 2 >= 0 cond1(z, z') -{ 2 }-> cond2(2, 0) :|: z = 2, z' = 0 cond1(z, z') -{ 2 }-> cond2(1, 1 + 0) :|: z = 2, z' = 1 + 0 cond1(z, z') -{ 1 }-> cond2(0, z') :|: z = 2, z' >= 0 cond2(z, z') -{ 3 }-> cond1(2, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 2, z' - 1 >= 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 }-> cond1(2, z' - 1) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 }-> cond1(2, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 2, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 1, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, z' - 1) :|: z' - 1 >= 0, z = 1 cond2(z, z') -{ 2 }-> cond1(0, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 div2(z) -{ 1 }-> 0 :|: z = 0 div2(z) -{ 1 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 1 }-> 1 + div2(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 1 }-> neq(z - 1, 1) :|: z' = 1 + 1, z - 1 >= 0 neq(z, z') -{ 1 }-> 2 :|: z' - 1 >= 0, z = 0 neq(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {neq}, {p}, {div2}, {even}, {cond2,cond1} Previous analysis results are: neq: runtime: ?, size: O(1) [2] ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: neq after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z') -{ 2 }-> cond2(even(z' - 2), 1 + (1 + (z' - 2))) :|: z = 2, z' - 2 >= 0 cond1(z, z') -{ 2 }-> cond2(2, 0) :|: z = 2, z' = 0 cond1(z, z') -{ 2 }-> cond2(1, 1 + 0) :|: z = 2, z' = 1 + 0 cond1(z, z') -{ 1 }-> cond2(0, z') :|: z = 2, z' >= 0 cond2(z, z') -{ 3 }-> cond1(2, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 2, z' - 1 >= 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 }-> cond1(2, z' - 1) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 }-> cond1(2, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 2, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 1, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, z' - 1) :|: z' - 1 >= 0, z = 1 cond2(z, z') -{ 2 }-> cond1(0, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 div2(z) -{ 1 }-> 0 :|: z = 0 div2(z) -{ 1 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 1 }-> 1 + div2(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 1 }-> neq(z - 1, 1) :|: z' = 1 + 1, z - 1 >= 0 neq(z, z') -{ 1 }-> 2 :|: z' - 1 >= 0, z = 0 neq(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {div2}, {even}, {cond2,cond1} Previous analysis results are: neq: runtime: O(1) [2], size: O(1) [2] ---------------------------------------- (21) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z') -{ 2 }-> cond2(even(z' - 2), 1 + (1 + (z' - 2))) :|: z = 2, z' - 2 >= 0 cond1(z, z') -{ 2 }-> cond2(2, 0) :|: z = 2, z' = 0 cond1(z, z') -{ 2 }-> cond2(1, 1 + 0) :|: z = 2, z' = 1 + 0 cond1(z, z') -{ 1 }-> cond2(0, z') :|: z = 2, z' >= 0 cond2(z, z') -{ 3 }-> cond1(2, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 2, z' - 1 >= 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 }-> cond1(2, z' - 1) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 }-> cond1(2, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 2, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 1, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, z' - 1) :|: z' - 1 >= 0, z = 1 cond2(z, z') -{ 2 }-> cond1(0, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 div2(z) -{ 1 }-> 0 :|: z = 0 div2(z) -{ 1 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 1 }-> 1 + div2(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 3 }-> s :|: s >= 0, s <= 2, z' = 1 + 1, z - 1 >= 0 neq(z, z') -{ 1 }-> 2 :|: z' - 1 >= 0, z = 0 neq(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {div2}, {even}, {cond2,cond1} Previous analysis results are: neq: runtime: O(1) [2], size: O(1) [2] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: p after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z') -{ 2 }-> cond2(even(z' - 2), 1 + (1 + (z' - 2))) :|: z = 2, z' - 2 >= 0 cond1(z, z') -{ 2 }-> cond2(2, 0) :|: z = 2, z' = 0 cond1(z, z') -{ 2 }-> cond2(1, 1 + 0) :|: z = 2, z' = 1 + 0 cond1(z, z') -{ 1 }-> cond2(0, z') :|: z = 2, z' >= 0 cond2(z, z') -{ 3 }-> cond1(2, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 2, z' - 1 >= 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 }-> cond1(2, z' - 1) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 }-> cond1(2, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 2, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 1, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, z' - 1) :|: z' - 1 >= 0, z = 1 cond2(z, z') -{ 2 }-> cond1(0, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 div2(z) -{ 1 }-> 0 :|: z = 0 div2(z) -{ 1 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 1 }-> 1 + div2(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 3 }-> s :|: s >= 0, s <= 2, z' = 1 + 1, z - 1 >= 0 neq(z, z') -{ 1 }-> 2 :|: z' - 1 >= 0, z = 0 neq(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {div2}, {even}, {cond2,cond1} Previous analysis results are: neq: runtime: O(1) [2], size: O(1) [2] p: runtime: ?, size: O(n^1) [z] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: p after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z') -{ 2 }-> cond2(even(z' - 2), 1 + (1 + (z' - 2))) :|: z = 2, z' - 2 >= 0 cond1(z, z') -{ 2 }-> cond2(2, 0) :|: z = 2, z' = 0 cond1(z, z') -{ 2 }-> cond2(1, 1 + 0) :|: z = 2, z' = 1 + 0 cond1(z, z') -{ 1 }-> cond2(0, z') :|: z = 2, z' >= 0 cond2(z, z') -{ 3 }-> cond1(2, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 2, z' - 1 >= 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 }-> cond1(2, z' - 1) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 }-> cond1(2, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 2, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 1, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, z' - 1) :|: z' - 1 >= 0, z = 1 cond2(z, z') -{ 2 }-> cond1(0, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 div2(z) -{ 1 }-> 0 :|: z = 0 div2(z) -{ 1 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 1 }-> 1 + div2(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 3 }-> s :|: s >= 0, s <= 2, z' = 1 + 1, z - 1 >= 0 neq(z, z') -{ 1 }-> 2 :|: z' - 1 >= 0, z = 0 neq(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {div2}, {even}, {cond2,cond1} Previous analysis results are: neq: runtime: O(1) [2], size: O(1) [2] p: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (27) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z') -{ 2 }-> cond2(even(z' - 2), 1 + (1 + (z' - 2))) :|: z = 2, z' - 2 >= 0 cond1(z, z') -{ 2 }-> cond2(2, 0) :|: z = 2, z' = 0 cond1(z, z') -{ 2 }-> cond2(1, 1 + 0) :|: z = 2, z' = 1 + 0 cond1(z, z') -{ 1 }-> cond2(0, z') :|: z = 2, z' >= 0 cond2(z, z') -{ 3 }-> cond1(2, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 2, z' - 1 >= 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 }-> cond1(2, z' - 1) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 }-> cond1(2, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 2, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 1, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, z' - 1) :|: z' - 1 >= 0, z = 1 cond2(z, z') -{ 2 }-> cond1(0, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 div2(z) -{ 1 }-> 0 :|: z = 0 div2(z) -{ 1 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 1 }-> 1 + div2(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 3 }-> s :|: s >= 0, s <= 2, z' = 1 + 1, z - 1 >= 0 neq(z, z') -{ 1 }-> 2 :|: z' - 1 >= 0, z = 0 neq(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {div2}, {even}, {cond2,cond1} Previous analysis results are: neq: runtime: O(1) [2], size: O(1) [2] p: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: div2 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z') -{ 2 }-> cond2(even(z' - 2), 1 + (1 + (z' - 2))) :|: z = 2, z' - 2 >= 0 cond1(z, z') -{ 2 }-> cond2(2, 0) :|: z = 2, z' = 0 cond1(z, z') -{ 2 }-> cond2(1, 1 + 0) :|: z = 2, z' = 1 + 0 cond1(z, z') -{ 1 }-> cond2(0, z') :|: z = 2, z' >= 0 cond2(z, z') -{ 3 }-> cond1(2, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 2, z' - 1 >= 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 }-> cond1(2, z' - 1) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 }-> cond1(2, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 2, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 1, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, z' - 1) :|: z' - 1 >= 0, z = 1 cond2(z, z') -{ 2 }-> cond1(0, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 div2(z) -{ 1 }-> 0 :|: z = 0 div2(z) -{ 1 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 1 }-> 1 + div2(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 3 }-> s :|: s >= 0, s <= 2, z' = 1 + 1, z - 1 >= 0 neq(z, z') -{ 1 }-> 2 :|: z' - 1 >= 0, z = 0 neq(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {div2}, {even}, {cond2,cond1} Previous analysis results are: neq: runtime: O(1) [2], size: O(1) [2] p: runtime: O(1) [1], size: O(n^1) [z] div2: runtime: ?, size: O(n^1) [z] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: div2 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z') -{ 2 }-> cond2(even(z' - 2), 1 + (1 + (z' - 2))) :|: z = 2, z' - 2 >= 0 cond1(z, z') -{ 2 }-> cond2(2, 0) :|: z = 2, z' = 0 cond1(z, z') -{ 2 }-> cond2(1, 1 + 0) :|: z = 2, z' = 1 + 0 cond1(z, z') -{ 1 }-> cond2(0, z') :|: z = 2, z' >= 0 cond2(z, z') -{ 3 }-> cond1(2, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 2, z' - 1 >= 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 }-> cond1(2, z' - 1) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 }-> cond1(2, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 2, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 1, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, z' - 1) :|: z' - 1 >= 0, z = 1 cond2(z, z') -{ 2 }-> cond1(0, 1 + div2(z' - 2)) :|: z = 2, z' - 2 >= 0 div2(z) -{ 1 }-> 0 :|: z = 0 div2(z) -{ 1 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 1 }-> 1 + div2(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 3 }-> s :|: s >= 0, s <= 2, z' = 1 + 1, z - 1 >= 0 neq(z, z') -{ 1 }-> 2 :|: z' - 1 >= 0, z = 0 neq(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {even}, {cond2,cond1} Previous analysis results are: neq: runtime: O(1) [2], size: O(1) [2] p: runtime: O(1) [1], size: O(n^1) [z] div2: runtime: O(n^1) [2 + z], size: O(n^1) [z] ---------------------------------------- (33) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z') -{ 2 }-> cond2(even(z' - 2), 1 + (1 + (z' - 2))) :|: z = 2, z' - 2 >= 0 cond1(z, z') -{ 2 }-> cond2(2, 0) :|: z = 2, z' = 0 cond1(z, z') -{ 2 }-> cond2(1, 1 + 0) :|: z = 2, z' = 1 + 0 cond1(z, z') -{ 1 }-> cond2(0, z') :|: z = 2, z' >= 0 cond2(z, z') -{ 3 }-> cond1(2, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 2, z' - 1 >= 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 }-> cond1(2, z' - 1) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 + z' }-> cond1(2, 1 + s') :|: s' >= 0, s' <= z' - 2, z = 2, z' - 2 >= 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 2, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 1, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, z' - 1) :|: z' - 1 >= 0, z = 1 cond2(z, z') -{ 2 + z' }-> cond1(0, 1 + s'') :|: s'' >= 0, s'' <= z' - 2, z = 2, z' - 2 >= 0 div2(z) -{ 1 }-> 0 :|: z = 0 div2(z) -{ 1 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 1 + z }-> 1 + s1 :|: s1 >= 0, s1 <= z - 2, z - 2 >= 0 even(z) -{ 1 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 3 }-> s :|: s >= 0, s <= 2, z' = 1 + 1, z - 1 >= 0 neq(z, z') -{ 1 }-> 2 :|: z' - 1 >= 0, z = 0 neq(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {even}, {cond2,cond1} Previous analysis results are: neq: runtime: O(1) [2], size: O(1) [2] p: runtime: O(1) [1], size: O(n^1) [z] div2: runtime: O(n^1) [2 + z], size: O(n^1) [z] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: even after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z') -{ 2 }-> cond2(even(z' - 2), 1 + (1 + (z' - 2))) :|: z = 2, z' - 2 >= 0 cond1(z, z') -{ 2 }-> cond2(2, 0) :|: z = 2, z' = 0 cond1(z, z') -{ 2 }-> cond2(1, 1 + 0) :|: z = 2, z' = 1 + 0 cond1(z, z') -{ 1 }-> cond2(0, z') :|: z = 2, z' >= 0 cond2(z, z') -{ 3 }-> cond1(2, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 2, z' - 1 >= 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 }-> cond1(2, z' - 1) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 + z' }-> cond1(2, 1 + s') :|: s' >= 0, s' <= z' - 2, z = 2, z' - 2 >= 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 2, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 1, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, z' - 1) :|: z' - 1 >= 0, z = 1 cond2(z, z') -{ 2 + z' }-> cond1(0, 1 + s'') :|: s'' >= 0, s'' <= z' - 2, z = 2, z' - 2 >= 0 div2(z) -{ 1 }-> 0 :|: z = 0 div2(z) -{ 1 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 1 + z }-> 1 + s1 :|: s1 >= 0, s1 <= z - 2, z - 2 >= 0 even(z) -{ 1 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 3 }-> s :|: s >= 0, s <= 2, z' = 1 + 1, z - 1 >= 0 neq(z, z') -{ 1 }-> 2 :|: z' - 1 >= 0, z = 0 neq(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {even}, {cond2,cond1} Previous analysis results are: neq: runtime: O(1) [2], size: O(1) [2] p: runtime: O(1) [1], size: O(n^1) [z] div2: runtime: O(n^1) [2 + z], size: O(n^1) [z] even: runtime: ?, size: O(1) [2] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: even after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z') -{ 2 }-> cond2(even(z' - 2), 1 + (1 + (z' - 2))) :|: z = 2, z' - 2 >= 0 cond1(z, z') -{ 2 }-> cond2(2, 0) :|: z = 2, z' = 0 cond1(z, z') -{ 2 }-> cond2(1, 1 + 0) :|: z = 2, z' = 1 + 0 cond1(z, z') -{ 1 }-> cond2(0, z') :|: z = 2, z' >= 0 cond2(z, z') -{ 3 }-> cond1(2, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 2, z' - 1 >= 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 }-> cond1(2, z' - 1) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 + z' }-> cond1(2, 1 + s') :|: s' >= 0, s' <= z' - 2, z = 2, z' - 2 >= 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 2, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 1, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, z' - 1) :|: z' - 1 >= 0, z = 1 cond2(z, z') -{ 2 + z' }-> cond1(0, 1 + s'') :|: s'' >= 0, s'' <= z' - 2, z = 2, z' - 2 >= 0 div2(z) -{ 1 }-> 0 :|: z = 0 div2(z) -{ 1 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 1 + z }-> 1 + s1 :|: s1 >= 0, s1 <= z - 2, z - 2 >= 0 even(z) -{ 1 }-> even(z - 2) :|: z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 3 }-> s :|: s >= 0, s <= 2, z' = 1 + 1, z - 1 >= 0 neq(z, z') -{ 1 }-> 2 :|: z' - 1 >= 0, z = 0 neq(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {cond2,cond1} Previous analysis results are: neq: runtime: O(1) [2], size: O(1) [2] p: runtime: O(1) [1], size: O(n^1) [z] div2: runtime: O(n^1) [2 + z], size: O(n^1) [z] even: runtime: O(n^1) [2 + z], size: O(1) [2] ---------------------------------------- (39) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z') -{ 2 + z' }-> cond2(s2, 1 + (1 + (z' - 2))) :|: s2 >= 0, s2 <= 2, z = 2, z' - 2 >= 0 cond1(z, z') -{ 2 }-> cond2(2, 0) :|: z = 2, z' = 0 cond1(z, z') -{ 2 }-> cond2(1, 1 + 0) :|: z = 2, z' = 1 + 0 cond1(z, z') -{ 1 }-> cond2(0, z') :|: z = 2, z' >= 0 cond2(z, z') -{ 3 }-> cond1(2, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 2, z' - 1 >= 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 }-> cond1(2, z' - 1) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 + z' }-> cond1(2, 1 + s') :|: s' >= 0, s' <= z' - 2, z = 2, z' - 2 >= 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 2, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 1, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, z' - 1) :|: z' - 1 >= 0, z = 1 cond2(z, z') -{ 2 + z' }-> cond1(0, 1 + s'') :|: s'' >= 0, s'' <= z' - 2, z = 2, z' - 2 >= 0 div2(z) -{ 1 }-> 0 :|: z = 0 div2(z) -{ 1 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 1 + z }-> 1 + s1 :|: s1 >= 0, s1 <= z - 2, z - 2 >= 0 even(z) -{ 1 + z }-> s3 :|: s3 >= 0, s3 <= 2, z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 3 }-> s :|: s >= 0, s <= 2, z' = 1 + 1, z - 1 >= 0 neq(z, z') -{ 1 }-> 2 :|: z' - 1 >= 0, z = 0 neq(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {cond2,cond1} Previous analysis results are: neq: runtime: O(1) [2], size: O(1) [2] p: runtime: O(1) [1], size: O(n^1) [z] div2: runtime: O(n^1) [2 + z], size: O(n^1) [z] even: runtime: O(n^1) [2 + z], size: O(1) [2] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: cond2 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 Computed SIZE bound using CoFloCo for: cond1 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z') -{ 2 + z' }-> cond2(s2, 1 + (1 + (z' - 2))) :|: s2 >= 0, s2 <= 2, z = 2, z' - 2 >= 0 cond1(z, z') -{ 2 }-> cond2(2, 0) :|: z = 2, z' = 0 cond1(z, z') -{ 2 }-> cond2(1, 1 + 0) :|: z = 2, z' = 1 + 0 cond1(z, z') -{ 1 }-> cond2(0, z') :|: z = 2, z' >= 0 cond2(z, z') -{ 3 }-> cond1(2, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 2, z' - 1 >= 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 }-> cond1(2, z' - 1) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 + z' }-> cond1(2, 1 + s') :|: s' >= 0, s' <= z' - 2, z = 2, z' - 2 >= 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 2, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 1, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, z' - 1) :|: z' - 1 >= 0, z = 1 cond2(z, z') -{ 2 + z' }-> cond1(0, 1 + s'') :|: s'' >= 0, s'' <= z' - 2, z = 2, z' - 2 >= 0 div2(z) -{ 1 }-> 0 :|: z = 0 div2(z) -{ 1 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 1 + z }-> 1 + s1 :|: s1 >= 0, s1 <= z - 2, z - 2 >= 0 even(z) -{ 1 + z }-> s3 :|: s3 >= 0, s3 <= 2, z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 3 }-> s :|: s >= 0, s <= 2, z' = 1 + 1, z - 1 >= 0 neq(z, z') -{ 1 }-> 2 :|: z' - 1 >= 0, z = 0 neq(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {cond2,cond1} Previous analysis results are: neq: runtime: O(1) [2], size: O(1) [2] p: runtime: O(1) [1], size: O(n^1) [z] div2: runtime: O(n^1) [2 + z], size: O(n^1) [z] even: runtime: O(n^1) [2 + z], size: O(1) [2] cond2: runtime: ?, size: O(1) [0] cond1: runtime: ?, size: O(1) [0] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: cond2 after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 45 + 69*z' + 6*z'^2 Computed RUNTIME bound using KoAT for: cond1 after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 262 + 139*z' + 12*z'^2 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: cond1(z, z') -{ 2 + z' }-> cond2(s2, 1 + (1 + (z' - 2))) :|: s2 >= 0, s2 <= 2, z = 2, z' - 2 >= 0 cond1(z, z') -{ 2 }-> cond2(2, 0) :|: z = 2, z' = 0 cond1(z, z') -{ 2 }-> cond2(1, 1 + 0) :|: z = 2, z' = 1 + 0 cond1(z, z') -{ 1 }-> cond2(0, z') :|: z = 2, z' >= 0 cond2(z, z') -{ 3 }-> cond1(2, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 2, z' - 1 >= 0 cond2(z, z') -{ 2 }-> cond1(2, 0) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 }-> cond1(2, z' - 1) :|: z = 1, z' - 1 >= 0 cond2(z, z') -{ 3 + z' }-> cond1(2, 1 + s') :|: s' >= 0, s' <= z' - 2, z = 2, z' - 2 >= 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 3 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(1, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 2, z' = 1 + 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 2, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, 0) :|: z = 1, z' = 0 cond2(z, z') -{ 1 }-> cond1(0, 0) :|: z = 1, z' >= 0 cond2(z, z') -{ 2 }-> cond1(0, z' - 1) :|: z' - 1 >= 0, z = 1 cond2(z, z') -{ 2 + z' }-> cond1(0, 1 + s'') :|: s'' >= 0, s'' <= z' - 2, z = 2, z' - 2 >= 0 div2(z) -{ 1 }-> 0 :|: z = 0 div2(z) -{ 1 }-> 0 :|: z = 1 + 0 div2(z) -{ 0 }-> 0 :|: z >= 0 div2(z) -{ 1 + z }-> 1 + s1 :|: s1 >= 0, s1 <= z - 2, z - 2 >= 0 even(z) -{ 1 + z }-> s3 :|: s3 >= 0, s3 <= 2, z - 2 >= 0 even(z) -{ 1 }-> 2 :|: z = 0 even(z) -{ 1 }-> 1 :|: z = 1 + 0 even(z) -{ 0 }-> 0 :|: z >= 0 neq(z, z') -{ 3 }-> s :|: s >= 0, s <= 2, z' = 1 + 1, z - 1 >= 0 neq(z, z') -{ 1 }-> 2 :|: z' - 1 >= 0, z = 0 neq(z, z') -{ 1 }-> 2 :|: z - 1 >= 0, z' = 0 neq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 neq(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: Previous analysis results are: neq: runtime: O(1) [2], size: O(1) [2] p: runtime: O(1) [1], size: O(n^1) [z] div2: runtime: O(n^1) [2 + z], size: O(n^1) [z] even: runtime: O(n^1) [2 + z], size: O(1) [2] cond2: runtime: O(n^2) [45 + 69*z' + 6*z'^2], size: O(1) [0] cond1: runtime: O(n^2) [262 + 139*z' + 12*z'^2], size: O(1) [0] ---------------------------------------- (45) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (46) BOUNDS(1, n^2) ---------------------------------------- (47) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (48) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: cond1(true, x) -> cond2(even(x), x) cond2(true, x) -> cond1(neq(x, 0'), div2(x)) cond2(false, x) -> cond1(neq(x, 0'), p(x)) neq(0', 0') -> false neq(0', s(x)) -> true neq(s(x), 0') -> true neq(s(x), s(y)) -> neq(x, y) even(0') -> true even(s(0')) -> false even(s(s(x))) -> even(x) div2(0') -> 0' div2(s(0')) -> 0' div2(s(s(x))) -> s(div2(x)) p(0') -> 0' p(s(x)) -> x S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (49) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (50) Obligation: Innermost TRS: Rules: cond1(true, x) -> cond2(even(x), x) cond2(true, x) -> cond1(neq(x, 0'), div2(x)) cond2(false, x) -> cond1(neq(x, 0'), p(x)) neq(0', 0') -> false neq(0', s(x)) -> true neq(s(x), 0') -> true neq(s(x), s(y)) -> neq(x, y) even(0') -> true even(s(0')) -> false even(s(s(x))) -> even(x) div2(0') -> 0' div2(s(0')) -> 0' div2(s(s(x))) -> s(div2(x)) p(0') -> 0' p(s(x)) -> x Types: cond1 :: true:false -> 0':s:y -> cond1:cond2 true :: true:false cond2 :: true:false -> 0':s:y -> cond1:cond2 even :: 0':s:y -> true:false neq :: 0':s:y -> 0':s:y -> true:false 0' :: 0':s:y div2 :: 0':s:y -> 0':s:y false :: true:false p :: 0':s:y -> 0':s:y s :: 0':s:y -> 0':s:y y :: 0':s:y hole_cond1:cond21_0 :: cond1:cond2 hole_true:false2_0 :: true:false hole_0':s:y3_0 :: 0':s:y gen_0':s:y4_0 :: Nat -> 0':s:y ---------------------------------------- (51) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: cond1, cond2, even, neq, div2 They will be analysed ascendingly in the following order: cond1 = cond2 even < cond1 neq < cond2 div2 < cond2 ---------------------------------------- (52) Obligation: Innermost TRS: Rules: cond1(true, x) -> cond2(even(x), x) cond2(true, x) -> cond1(neq(x, 0'), div2(x)) cond2(false, x) -> cond1(neq(x, 0'), p(x)) neq(0', 0') -> false neq(0', s(x)) -> true neq(s(x), 0') -> true neq(s(x), s(y)) -> neq(x, y) even(0') -> true even(s(0')) -> false even(s(s(x))) -> even(x) div2(0') -> 0' div2(s(0')) -> 0' div2(s(s(x))) -> s(div2(x)) p(0') -> 0' p(s(x)) -> x Types: cond1 :: true:false -> 0':s:y -> cond1:cond2 true :: true:false cond2 :: true:false -> 0':s:y -> cond1:cond2 even :: 0':s:y -> true:false neq :: 0':s:y -> 0':s:y -> true:false 0' :: 0':s:y div2 :: 0':s:y -> 0':s:y false :: true:false p :: 0':s:y -> 0':s:y s :: 0':s:y -> 0':s:y y :: 0':s:y hole_cond1:cond21_0 :: cond1:cond2 hole_true:false2_0 :: true:false hole_0':s:y3_0 :: 0':s:y gen_0':s:y4_0 :: Nat -> 0':s:y Generator Equations: gen_0':s:y4_0(0) <=> 0' gen_0':s:y4_0(+(x, 1)) <=> s(gen_0':s:y4_0(x)) The following defined symbols remain to be analysed: even, cond1, cond2, neq, div2 They will be analysed ascendingly in the following order: cond1 = cond2 even < cond1 neq < cond2 div2 < cond2 ---------------------------------------- (53) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: even(gen_0':s:y4_0(*(2, n6_0))) -> true, rt in Omega(1 + n6_0) Induction Base: even(gen_0':s:y4_0(*(2, 0))) ->_R^Omega(1) true Induction Step: even(gen_0':s:y4_0(*(2, +(n6_0, 1)))) ->_R^Omega(1) even(gen_0':s:y4_0(*(2, n6_0))) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (54) Complex Obligation (BEST) ---------------------------------------- (55) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: cond1(true, x) -> cond2(even(x), x) cond2(true, x) -> cond1(neq(x, 0'), div2(x)) cond2(false, x) -> cond1(neq(x, 0'), p(x)) neq(0', 0') -> false neq(0', s(x)) -> true neq(s(x), 0') -> true neq(s(x), s(y)) -> neq(x, y) even(0') -> true even(s(0')) -> false even(s(s(x))) -> even(x) div2(0') -> 0' div2(s(0')) -> 0' div2(s(s(x))) -> s(div2(x)) p(0') -> 0' p(s(x)) -> x Types: cond1 :: true:false -> 0':s:y -> cond1:cond2 true :: true:false cond2 :: true:false -> 0':s:y -> cond1:cond2 even :: 0':s:y -> true:false neq :: 0':s:y -> 0':s:y -> true:false 0' :: 0':s:y div2 :: 0':s:y -> 0':s:y false :: true:false p :: 0':s:y -> 0':s:y s :: 0':s:y -> 0':s:y y :: 0':s:y hole_cond1:cond21_0 :: cond1:cond2 hole_true:false2_0 :: true:false hole_0':s:y3_0 :: 0':s:y gen_0':s:y4_0 :: Nat -> 0':s:y Generator Equations: gen_0':s:y4_0(0) <=> 0' gen_0':s:y4_0(+(x, 1)) <=> s(gen_0':s:y4_0(x)) The following defined symbols remain to be analysed: even, cond1, cond2, neq, div2 They will be analysed ascendingly in the following order: cond1 = cond2 even < cond1 neq < cond2 div2 < cond2 ---------------------------------------- (56) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (57) BOUNDS(n^1, INF) ---------------------------------------- (58) Obligation: Innermost TRS: Rules: cond1(true, x) -> cond2(even(x), x) cond2(true, x) -> cond1(neq(x, 0'), div2(x)) cond2(false, x) -> cond1(neq(x, 0'), p(x)) neq(0', 0') -> false neq(0', s(x)) -> true neq(s(x), 0') -> true neq(s(x), s(y)) -> neq(x, y) even(0') -> true even(s(0')) -> false even(s(s(x))) -> even(x) div2(0') -> 0' div2(s(0')) -> 0' div2(s(s(x))) -> s(div2(x)) p(0') -> 0' p(s(x)) -> x Types: cond1 :: true:false -> 0':s:y -> cond1:cond2 true :: true:false cond2 :: true:false -> 0':s:y -> cond1:cond2 even :: 0':s:y -> true:false neq :: 0':s:y -> 0':s:y -> true:false 0' :: 0':s:y div2 :: 0':s:y -> 0':s:y false :: true:false p :: 0':s:y -> 0':s:y s :: 0':s:y -> 0':s:y y :: 0':s:y hole_cond1:cond21_0 :: cond1:cond2 hole_true:false2_0 :: true:false hole_0':s:y3_0 :: 0':s:y gen_0':s:y4_0 :: Nat -> 0':s:y Lemmas: even(gen_0':s:y4_0(*(2, n6_0))) -> true, rt in Omega(1 + n6_0) Generator Equations: gen_0':s:y4_0(0) <=> 0' gen_0':s:y4_0(+(x, 1)) <=> s(gen_0':s:y4_0(x)) The following defined symbols remain to be analysed: neq, cond1, cond2, div2 They will be analysed ascendingly in the following order: cond1 = cond2 neq < cond2 div2 < cond2 ---------------------------------------- (59) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: div2(gen_0':s:y4_0(*(2, n208_0))) -> gen_0':s:y4_0(n208_0), rt in Omega(1 + n208_0) Induction Base: div2(gen_0':s:y4_0(*(2, 0))) ->_R^Omega(1) 0' Induction Step: div2(gen_0':s:y4_0(*(2, +(n208_0, 1)))) ->_R^Omega(1) s(div2(gen_0':s:y4_0(*(2, n208_0)))) ->_IH s(gen_0':s:y4_0(c209_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (60) Obligation: Innermost TRS: Rules: cond1(true, x) -> cond2(even(x), x) cond2(true, x) -> cond1(neq(x, 0'), div2(x)) cond2(false, x) -> cond1(neq(x, 0'), p(x)) neq(0', 0') -> false neq(0', s(x)) -> true neq(s(x), 0') -> true neq(s(x), s(y)) -> neq(x, y) even(0') -> true even(s(0')) -> false even(s(s(x))) -> even(x) div2(0') -> 0' div2(s(0')) -> 0' div2(s(s(x))) -> s(div2(x)) p(0') -> 0' p(s(x)) -> x Types: cond1 :: true:false -> 0':s:y -> cond1:cond2 true :: true:false cond2 :: true:false -> 0':s:y -> cond1:cond2 even :: 0':s:y -> true:false neq :: 0':s:y -> 0':s:y -> true:false 0' :: 0':s:y div2 :: 0':s:y -> 0':s:y false :: true:false p :: 0':s:y -> 0':s:y s :: 0':s:y -> 0':s:y y :: 0':s:y hole_cond1:cond21_0 :: cond1:cond2 hole_true:false2_0 :: true:false hole_0':s:y3_0 :: 0':s:y gen_0':s:y4_0 :: Nat -> 0':s:y Lemmas: even(gen_0':s:y4_0(*(2, n6_0))) -> true, rt in Omega(1 + n6_0) div2(gen_0':s:y4_0(*(2, n208_0))) -> gen_0':s:y4_0(n208_0), rt in Omega(1 + n208_0) Generator Equations: gen_0':s:y4_0(0) <=> 0' gen_0':s:y4_0(+(x, 1)) <=> s(gen_0':s:y4_0(x)) The following defined symbols remain to be analysed: cond2, cond1 They will be analysed ascendingly in the following order: cond1 = cond2