/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (10) CpxRNTS (11) InliningProof [UPPER BOUND(ID), 394 ms] (12) CpxRNTS (13) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 186 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 78 ms] (22) CpxRNTS (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 554 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 248 ms] (28) CpxRNTS (29) ResultPropagationProof [UPPER BOUND(ID), 1 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 159 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 53 ms] (34) CpxRNTS (35) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 292 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 165 ms] (40) CpxRNTS (41) FinalProof [FINISHED, 0 ms] (42) BOUNDS(1, n^1) (43) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (44) CpxTRS (45) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (46) typed CpxTrs (47) OrderProof [LOWER BOUND(ID), 0 ms] (48) typed CpxTrs (49) RewriteLemmaProof [LOWER BOUND(ID), 237 ms] (50) BEST (51) proven lower bound (52) LowerBoundPropagationProof [FINISHED, 0 ms] (53) BOUNDS(n^1, INF) (54) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: cond(true, x, y) -> cond(and(gr(x, 0), gr(y, 0)), p(x), p(y)) and(true, true) -> true and(x, false) -> false and(false, x) -> false gr(0, 0) -> false gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) p(0) -> 0 p(s(x)) -> x S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: cond(true, x, y) -> cond(and(gr(x, 0), gr(y, 0)), p(x), p(y)) [1] and(true, true) -> true [1] and(x, false) -> false [1] and(false, x) -> false [1] gr(0, 0) -> false [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] p(0) -> 0 [1] p(s(x)) -> x [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond(true, x, y) -> cond(and(gr(x, 0), gr(y, 0)), p(x), p(y)) [1] and(true, true) -> true [1] and(x, false) -> false [1] and(false, x) -> false [1] gr(0, 0) -> false [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] p(0) -> 0 [1] p(s(x)) -> x [1] The TRS has the following type information: cond :: true:false -> 0:s -> 0:s -> cond true :: true:false and :: true:false -> true:false -> true:false gr :: 0:s -> 0:s -> true:false 0 :: 0:s p :: 0:s -> 0:s false :: true:false s :: 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: cond_3 (c) The following functions are completely defined: and_2 gr_2 p_1 Due to the following rules being added: none And the following fresh constants: const ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond(true, x, y) -> cond(and(gr(x, 0), gr(y, 0)), p(x), p(y)) [1] and(true, true) -> true [1] and(x, false) -> false [1] and(false, x) -> false [1] gr(0, 0) -> false [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] p(0) -> 0 [1] p(s(x)) -> x [1] The TRS has the following type information: cond :: true:false -> 0:s -> 0:s -> cond true :: true:false and :: true:false -> true:false -> true:false gr :: 0:s -> 0:s -> true:false 0 :: 0:s p :: 0:s -> 0:s false :: true:false s :: 0:s -> 0:s const :: cond Rewrite Strategy: INNERMOST ---------------------------------------- (7) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond(true, 0, 0) -> cond(and(false, false), 0, 0) [5] cond(true, 0, 0) -> cond(and(false, false), 0, 0) [5] cond(true, 0, s(x'')) -> cond(and(false, true), 0, x'') [5] cond(true, 0, 0) -> cond(and(false, false), 0, 0) [5] cond(true, 0, 0) -> cond(and(false, false), 0, 0) [5] cond(true, 0, s(x1)) -> cond(and(false, true), 0, x1) [5] cond(true, s(x'), 0) -> cond(and(true, false), x', 0) [5] cond(true, s(x'), 0) -> cond(and(true, false), x', 0) [5] cond(true, s(x'), s(x2)) -> cond(and(true, true), x', x2) [5] and(true, true) -> true [1] and(x, false) -> false [1] and(false, x) -> false [1] gr(0, 0) -> false [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] p(0) -> 0 [1] p(s(x)) -> x [1] The TRS has the following type information: cond :: true:false -> 0:s -> 0:s -> cond true :: true:false and :: true:false -> true:false -> true:false gr :: 0:s -> 0:s -> true:false 0 :: 0:s p :: 0:s -> 0:s false :: true:false s :: 0:s -> 0:s const :: cond Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: true => 1 0 => 0 false => 0 const => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: x >= 0, z = x, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 cond(z, z', z'') -{ 5 }-> cond(and(1, 1), x', x2) :|: z' = 1 + x', z = 1, x' >= 0, z'' = 1 + x2, x2 >= 0 cond(z, z', z'') -{ 5 }-> cond(and(1, 0), x', 0) :|: z'' = 0, z' = 1 + x', z = 1, x' >= 0 cond(z, z', z'') -{ 5 }-> cond(and(0, 1), 0, x'') :|: z = 1, z'' = 1 + x'', x'' >= 0, z' = 0 cond(z, z', z'') -{ 5 }-> cond(and(0, 1), 0, x1) :|: x1 >= 0, z = 1, z'' = 1 + x1, z' = 0 cond(z, z', z'') -{ 5 }-> cond(and(0, 0), 0, 0) :|: z'' = 0, z = 1, z' = 0 gr(z, z') -{ 1 }-> gr(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x gr(z, z') -{ 1 }-> 1 :|: x >= 0, z = 1 + x, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x p(z) -{ 1 }-> 0 :|: z = 0 ---------------------------------------- (11) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: x >= 0, z = x, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: x >= 0, z = x, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 cond(z, z', z'') -{ 6 }-> cond(1, x', x2) :|: z' = 1 + x', z = 1, x' >= 0, z'' = 1 + x2, x2 >= 0, 1 = 1 cond(z, z', z'') -{ 6 }-> cond(0, x', 0) :|: z'' = 0, z' = 1 + x', z = 1, x' >= 0, x >= 0, 1 = x, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, 0, x'') :|: z = 1, z'' = 1 + x'', x'' >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, 0, x1) :|: x1 >= 0, z = 1, z'' = 1 + x1, z' = 0, 1 = x, x >= 0, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 gr(z, z') -{ 1 }-> gr(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x gr(z, z') -{ 1 }-> 1 :|: x >= 0, z = 1 + x, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x p(z) -{ 1 }-> 0 :|: z = 0 ---------------------------------------- (13) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 cond(z, z', z'') -{ 6 }-> cond(1, z' - 1, z'' - 1) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 cond(z, z', z'') -{ 6 }-> cond(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 ---------------------------------------- (15) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { and } { cond } { p } { gr } ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 cond(z, z', z'') -{ 6 }-> cond(1, z' - 1, z'' - 1) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 cond(z, z', z'') -{ 6 }-> cond(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {and}, {cond}, {p}, {gr} ---------------------------------------- (17) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 cond(z, z', z'') -{ 6 }-> cond(1, z' - 1, z'' - 1) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 cond(z, z', z'') -{ 6 }-> cond(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {and}, {cond}, {p}, {gr} ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: and after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 cond(z, z', z'') -{ 6 }-> cond(1, z' - 1, z'' - 1) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 cond(z, z', z'') -{ 6 }-> cond(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {and}, {cond}, {p}, {gr} Previous analysis results are: and: runtime: ?, size: O(1) [1] ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: and after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 cond(z, z', z'') -{ 6 }-> cond(1, z' - 1, z'' - 1) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 cond(z, z', z'') -{ 6 }-> cond(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {cond}, {p}, {gr} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (23) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 cond(z, z', z'') -{ 6 }-> cond(1, z' - 1, z'' - 1) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 cond(z, z', z'') -{ 6 }-> cond(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {cond}, {p}, {gr} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: cond after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 cond(z, z', z'') -{ 6 }-> cond(1, z' - 1, z'' - 1) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 cond(z, z', z'') -{ 6 }-> cond(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {cond}, {p}, {gr} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] cond: runtime: ?, size: O(1) [0] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: cond after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 24*z + 24*z' ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 cond(z, z', z'') -{ 6 }-> cond(1, z' - 1, z'' - 1) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 cond(z, z', z'') -{ 6 }-> cond(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond(z, z', z'') -{ 6 }-> cond(0, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {gr} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] cond: runtime: O(n^1) [24*z + 24*z'], size: O(1) [0] ---------------------------------------- (29) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 cond(z, z', z'') -{ 6 }-> s :|: s >= 0, s <= 0, z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 cond(z, z', z'') -{ 6 }-> s' :|: s' >= 0, s' <= 0, z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond(z, z', z'') -{ -18 + 24*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 cond(z, z', z'') -{ 6 + 24*z' }-> s1 :|: s1 >= 0, s1 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {gr} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] cond: runtime: O(n^1) [24*z + 24*z'], size: O(1) [0] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: p after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 cond(z, z', z'') -{ 6 }-> s :|: s >= 0, s <= 0, z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 cond(z, z', z'') -{ 6 }-> s' :|: s' >= 0, s' <= 0, z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond(z, z', z'') -{ -18 + 24*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 cond(z, z', z'') -{ 6 + 24*z' }-> s1 :|: s1 >= 0, s1 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {gr} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] cond: runtime: O(n^1) [24*z + 24*z'], size: O(1) [0] p: runtime: ?, size: O(n^1) [z] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: p after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 cond(z, z', z'') -{ 6 }-> s :|: s >= 0, s <= 0, z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 cond(z, z', z'') -{ 6 }-> s' :|: s' >= 0, s' <= 0, z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond(z, z', z'') -{ -18 + 24*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 cond(z, z', z'') -{ 6 + 24*z' }-> s1 :|: s1 >= 0, s1 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {gr} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] cond: runtime: O(n^1) [24*z + 24*z'], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (35) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 cond(z, z', z'') -{ 6 }-> s :|: s >= 0, s <= 0, z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 cond(z, z', z'') -{ 6 }-> s' :|: s' >= 0, s' <= 0, z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond(z, z', z'') -{ -18 + 24*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 cond(z, z', z'') -{ 6 + 24*z' }-> s1 :|: s1 >= 0, s1 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {gr} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] cond: runtime: O(n^1) [24*z + 24*z'], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: gr after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 cond(z, z', z'') -{ 6 }-> s :|: s >= 0, s <= 0, z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 cond(z, z', z'') -{ 6 }-> s' :|: s' >= 0, s' <= 0, z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond(z, z', z'') -{ -18 + 24*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 cond(z, z', z'') -{ 6 + 24*z' }-> s1 :|: s1 >= 0, s1 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {gr} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] cond: runtime: O(n^1) [24*z + 24*z'], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: ?, size: O(1) [1] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: gr after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + z' ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 cond(z, z', z'') -{ 6 }-> s :|: s >= 0, s <= 0, z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 cond(z, z', z'') -{ 6 }-> s' :|: s' >= 0, s' <= 0, z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 cond(z, z', z'') -{ -18 + 24*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 cond(z, z', z'') -{ 6 + 24*z' }-> s1 :|: s1 >= 0, s1 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] cond: runtime: O(n^1) [24*z + 24*z'], size: O(1) [0] p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: O(n^1) [3 + z'], size: O(1) [1] ---------------------------------------- (41) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (42) BOUNDS(1, n^1) ---------------------------------------- (43) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (44) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: cond(true, x, y) -> cond(and(gr(x, 0'), gr(y, 0')), p(x), p(y)) and(true, true) -> true and(x, false) -> false and(false, x) -> false gr(0', 0') -> false gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) p(0') -> 0' p(s(x)) -> x S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (45) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (46) Obligation: Innermost TRS: Rules: cond(true, x, y) -> cond(and(gr(x, 0'), gr(y, 0')), p(x), p(y)) and(true, true) -> true and(x, false) -> false and(false, x) -> false gr(0', 0') -> false gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) p(0') -> 0' p(s(x)) -> x Types: cond :: true:false -> 0':s -> 0':s -> cond true :: true:false and :: true:false -> true:false -> true:false gr :: 0':s -> 0':s -> true:false 0' :: 0':s p :: 0':s -> 0':s false :: true:false s :: 0':s -> 0':s hole_cond1_0 :: cond hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s ---------------------------------------- (47) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: cond, gr They will be analysed ascendingly in the following order: gr < cond ---------------------------------------- (48) Obligation: Innermost TRS: Rules: cond(true, x, y) -> cond(and(gr(x, 0'), gr(y, 0')), p(x), p(y)) and(true, true) -> true and(x, false) -> false and(false, x) -> false gr(0', 0') -> false gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) p(0') -> 0' p(s(x)) -> x Types: cond :: true:false -> 0':s -> 0':s -> cond true :: true:false and :: true:false -> true:false -> true:false gr :: 0':s -> 0':s -> true:false 0' :: 0':s p :: 0':s -> 0':s false :: true:false s :: 0':s -> 0':s hole_cond1_0 :: cond hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: gr, cond They will be analysed ascendingly in the following order: gr < cond ---------------------------------------- (49) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) -> false, rt in Omega(1 + n6_0) Induction Base: gr(gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) false Induction Step: gr(gen_0':s4_0(+(n6_0, 1)), gen_0':s4_0(+(n6_0, 1))) ->_R^Omega(1) gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) ->_IH false We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (50) Complex Obligation (BEST) ---------------------------------------- (51) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: cond(true, x, y) -> cond(and(gr(x, 0'), gr(y, 0')), p(x), p(y)) and(true, true) -> true and(x, false) -> false and(false, x) -> false gr(0', 0') -> false gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) p(0') -> 0' p(s(x)) -> x Types: cond :: true:false -> 0':s -> 0':s -> cond true :: true:false and :: true:false -> true:false -> true:false gr :: 0':s -> 0':s -> true:false 0' :: 0':s p :: 0':s -> 0':s false :: true:false s :: 0':s -> 0':s hole_cond1_0 :: cond hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: gr, cond They will be analysed ascendingly in the following order: gr < cond ---------------------------------------- (52) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (53) BOUNDS(n^1, INF) ---------------------------------------- (54) Obligation: Innermost TRS: Rules: cond(true, x, y) -> cond(and(gr(x, 0'), gr(y, 0')), p(x), p(y)) and(true, true) -> true and(x, false) -> false and(false, x) -> false gr(0', 0') -> false gr(0', x) -> false gr(s(x), 0') -> true gr(s(x), s(y)) -> gr(x, y) p(0') -> 0' p(s(x)) -> x Types: cond :: true:false -> 0':s -> 0':s -> cond true :: true:false and :: true:false -> true:false -> true:false gr :: 0':s -> 0':s -> true:false 0' :: 0':s p :: 0':s -> 0':s false :: true:false s :: 0':s -> 0':s hole_cond1_0 :: cond hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s Lemmas: gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) -> false, rt in Omega(1 + n6_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: cond