/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (10) CpxRNTS (11) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxRNTS (13) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) IntTrsBoundProof [UPPER BOUND(ID), 222 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 108 ms] (20) CpxRNTS (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 151 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 55 ms] (26) CpxRNTS (27) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 360 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 167 ms] (32) CpxRNTS (33) FinalProof [FINISHED, 0 ms] (34) BOUNDS(1, n^2) (35) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (36) CpxTRS (37) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (38) typed CpxTrs (39) OrderProof [LOWER BOUND(ID), 0 ms] (40) typed CpxTrs (41) RewriteLemmaProof [LOWER BOUND(ID), 255 ms] (42) BEST (43) proven lower bound (44) LowerBoundPropagationProof [FINISHED, 0 ms] (45) BOUNDS(n^1, INF) (46) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: cond(true, x) -> cond(odd(x), p(x)) odd(0) -> false odd(s(0)) -> true odd(s(s(x))) -> odd(x) p(0) -> 0 p(s(x)) -> x S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: cond(true, x) -> cond(odd(x), p(x)) [1] odd(0) -> false [1] odd(s(0)) -> true [1] odd(s(s(x))) -> odd(x) [1] p(0) -> 0 [1] p(s(x)) -> x [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond(true, x) -> cond(odd(x), p(x)) [1] odd(0) -> false [1] odd(s(0)) -> true [1] odd(s(s(x))) -> odd(x) [1] p(0) -> 0 [1] p(s(x)) -> x [1] The TRS has the following type information: cond :: true:false -> 0:s -> cond true :: true:false odd :: 0:s -> true:false p :: 0:s -> 0:s 0 :: 0:s false :: true:false s :: 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: cond_2 (c) The following functions are completely defined: odd_1 p_1 Due to the following rules being added: none And the following fresh constants: const ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond(true, x) -> cond(odd(x), p(x)) [1] odd(0) -> false [1] odd(s(0)) -> true [1] odd(s(s(x))) -> odd(x) [1] p(0) -> 0 [1] p(s(x)) -> x [1] The TRS has the following type information: cond :: true:false -> 0:s -> cond true :: true:false odd :: 0:s -> true:false p :: 0:s -> 0:s 0 :: 0:s false :: true:false s :: 0:s -> 0:s const :: cond Rewrite Strategy: INNERMOST ---------------------------------------- (7) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond(true, 0) -> cond(false, 0) [3] cond(true, s(0)) -> cond(true, 0) [3] cond(true, s(s(x'))) -> cond(odd(x'), s(x')) [3] odd(0) -> false [1] odd(s(0)) -> true [1] odd(s(s(x))) -> odd(x) [1] p(0) -> 0 [1] p(s(x)) -> x [1] The TRS has the following type information: cond :: true:false -> 0:s -> cond true :: true:false odd :: 0:s -> true:false p :: 0:s -> 0:s 0 :: 0:s false :: true:false s :: 0:s -> 0:s const :: cond Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: true => 1 0 => 0 false => 0 const => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: cond(z, z') -{ 3 }-> cond(odd(x'), 1 + x') :|: z' = 1 + (1 + x'), z = 1, x' >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 1, z' = 1 + 0 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 1, z' = 0 odd(z) -{ 1 }-> odd(x) :|: x >= 0, z = 1 + (1 + x) odd(z) -{ 1 }-> 1 :|: z = 1 + 0 odd(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x p(z) -{ 1 }-> 0 :|: z = 0 ---------------------------------------- (11) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: cond(z, z') -{ 3 }-> cond(odd(z' - 2), 1 + (z' - 2)) :|: z = 1, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 1, z' = 1 + 0 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 1, z' = 0 odd(z) -{ 1 }-> odd(z - 2) :|: z - 2 >= 0 odd(z) -{ 1 }-> 1 :|: z = 1 + 0 odd(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 ---------------------------------------- (13) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { odd } { p } { cond } ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: cond(z, z') -{ 3 }-> cond(odd(z' - 2), 1 + (z' - 2)) :|: z = 1, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 1, z' = 1 + 0 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 1, z' = 0 odd(z) -{ 1 }-> odd(z - 2) :|: z - 2 >= 0 odd(z) -{ 1 }-> 1 :|: z = 1 + 0 odd(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {odd}, {p}, {cond} ---------------------------------------- (15) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: cond(z, z') -{ 3 }-> cond(odd(z' - 2), 1 + (z' - 2)) :|: z = 1, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 1, z' = 1 + 0 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 1, z' = 0 odd(z) -{ 1 }-> odd(z - 2) :|: z - 2 >= 0 odd(z) -{ 1 }-> 1 :|: z = 1 + 0 odd(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {odd}, {p}, {cond} ---------------------------------------- (17) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: odd after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: cond(z, z') -{ 3 }-> cond(odd(z' - 2), 1 + (z' - 2)) :|: z = 1, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 1, z' = 1 + 0 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 1, z' = 0 odd(z) -{ 1 }-> odd(z - 2) :|: z - 2 >= 0 odd(z) -{ 1 }-> 1 :|: z = 1 + 0 odd(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {odd}, {p}, {cond} Previous analysis results are: odd: runtime: ?, size: O(1) [1] ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: odd after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: cond(z, z') -{ 3 }-> cond(odd(z' - 2), 1 + (z' - 2)) :|: z = 1, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 1, z' = 1 + 0 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 1, z' = 0 odd(z) -{ 1 }-> odd(z - 2) :|: z - 2 >= 0 odd(z) -{ 1 }-> 1 :|: z = 1 + 0 odd(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {cond} Previous analysis results are: odd: runtime: O(n^1) [2 + z], size: O(1) [1] ---------------------------------------- (21) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: cond(z, z') -{ 3 + z' }-> cond(s, 1 + (z' - 2)) :|: s >= 0, s <= 1, z = 1, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 1, z' = 1 + 0 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 1, z' = 0 odd(z) -{ 1 + z }-> s' :|: s' >= 0, s' <= 1, z - 2 >= 0 odd(z) -{ 1 }-> 1 :|: z = 1 + 0 odd(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {cond} Previous analysis results are: odd: runtime: O(n^1) [2 + z], size: O(1) [1] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: p after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: cond(z, z') -{ 3 + z' }-> cond(s, 1 + (z' - 2)) :|: s >= 0, s <= 1, z = 1, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 1, z' = 1 + 0 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 1, z' = 0 odd(z) -{ 1 + z }-> s' :|: s' >= 0, s' <= 1, z - 2 >= 0 odd(z) -{ 1 }-> 1 :|: z = 1 + 0 odd(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {cond} Previous analysis results are: odd: runtime: O(n^1) [2 + z], size: O(1) [1] p: runtime: ?, size: O(n^1) [z] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: p after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: cond(z, z') -{ 3 + z' }-> cond(s, 1 + (z' - 2)) :|: s >= 0, s <= 1, z = 1, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 1, z' = 1 + 0 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 1, z' = 0 odd(z) -{ 1 + z }-> s' :|: s' >= 0, s' <= 1, z - 2 >= 0 odd(z) -{ 1 }-> 1 :|: z = 1 + 0 odd(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {cond} Previous analysis results are: odd: runtime: O(n^1) [2 + z], size: O(1) [1] p: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (27) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: cond(z, z') -{ 3 + z' }-> cond(s, 1 + (z' - 2)) :|: s >= 0, s <= 1, z = 1, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 1, z' = 1 + 0 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 1, z' = 0 odd(z) -{ 1 + z }-> s' :|: s' >= 0, s' <= 1, z - 2 >= 0 odd(z) -{ 1 }-> 1 :|: z = 1 + 0 odd(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {cond} Previous analysis results are: odd: runtime: O(n^1) [2 + z], size: O(1) [1] p: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: cond after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: cond(z, z') -{ 3 + z' }-> cond(s, 1 + (z' - 2)) :|: s >= 0, s <= 1, z = 1, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 1, z' = 1 + 0 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 1, z' = 0 odd(z) -{ 1 + z }-> s' :|: s' >= 0, s' <= 1, z - 2 >= 0 odd(z) -{ 1 }-> 1 :|: z = 1 + 0 odd(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {cond} Previous analysis results are: odd: runtime: O(n^1) [2 + z], size: O(1) [1] p: runtime: O(1) [1], size: O(n^1) [z] cond: runtime: ?, size: O(1) [0] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: cond after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 9 + 4*z' + z'^2 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: cond(z, z') -{ 3 + z' }-> cond(s, 1 + (z' - 2)) :|: s >= 0, s <= 1, z = 1, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 1, z' = 1 + 0 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 1, z' = 0 odd(z) -{ 1 + z }-> s' :|: s' >= 0, s' <= 1, z - 2 >= 0 odd(z) -{ 1 }-> 1 :|: z = 1 + 0 odd(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: Previous analysis results are: odd: runtime: O(n^1) [2 + z], size: O(1) [1] p: runtime: O(1) [1], size: O(n^1) [z] cond: runtime: O(n^2) [9 + 4*z' + z'^2], size: O(1) [0] ---------------------------------------- (33) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (34) BOUNDS(1, n^2) ---------------------------------------- (35) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (36) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: cond(true, x) -> cond(odd(x), p(x)) odd(0') -> false odd(s(0')) -> true odd(s(s(x))) -> odd(x) p(0') -> 0' p(s(x)) -> x S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (37) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (38) Obligation: Innermost TRS: Rules: cond(true, x) -> cond(odd(x), p(x)) odd(0') -> false odd(s(0')) -> true odd(s(s(x))) -> odd(x) p(0') -> 0' p(s(x)) -> x Types: cond :: true:false -> 0':s -> cond true :: true:false odd :: 0':s -> true:false p :: 0':s -> 0':s 0' :: 0':s false :: true:false s :: 0':s -> 0':s hole_cond1_0 :: cond hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s ---------------------------------------- (39) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: cond, odd They will be analysed ascendingly in the following order: odd < cond ---------------------------------------- (40) Obligation: Innermost TRS: Rules: cond(true, x) -> cond(odd(x), p(x)) odd(0') -> false odd(s(0')) -> true odd(s(s(x))) -> odd(x) p(0') -> 0' p(s(x)) -> x Types: cond :: true:false -> 0':s -> cond true :: true:false odd :: 0':s -> true:false p :: 0':s -> 0':s 0' :: 0':s false :: true:false s :: 0':s -> 0':s hole_cond1_0 :: cond hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: odd, cond They will be analysed ascendingly in the following order: odd < cond ---------------------------------------- (41) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: odd(gen_0':s4_0(*(2, n6_0))) -> false, rt in Omega(1 + n6_0) Induction Base: odd(gen_0':s4_0(*(2, 0))) ->_R^Omega(1) false Induction Step: odd(gen_0':s4_0(*(2, +(n6_0, 1)))) ->_R^Omega(1) odd(gen_0':s4_0(*(2, n6_0))) ->_IH false We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (42) Complex Obligation (BEST) ---------------------------------------- (43) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: cond(true, x) -> cond(odd(x), p(x)) odd(0') -> false odd(s(0')) -> true odd(s(s(x))) -> odd(x) p(0') -> 0' p(s(x)) -> x Types: cond :: true:false -> 0':s -> cond true :: true:false odd :: 0':s -> true:false p :: 0':s -> 0':s 0' :: 0':s false :: true:false s :: 0':s -> 0':s hole_cond1_0 :: cond hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: odd, cond They will be analysed ascendingly in the following order: odd < cond ---------------------------------------- (44) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (45) BOUNDS(n^1, INF) ---------------------------------------- (46) Obligation: Innermost TRS: Rules: cond(true, x) -> cond(odd(x), p(x)) odd(0') -> false odd(s(0')) -> true odd(s(s(x))) -> odd(x) p(0') -> 0' p(s(x)) -> x Types: cond :: true:false -> 0':s -> cond true :: true:false odd :: 0':s -> true:false p :: 0':s -> 0':s 0' :: 0':s false :: true:false s :: 0':s -> 0':s hole_cond1_0 :: cond hole_true:false2_0 :: true:false hole_0':s3_0 :: 0':s gen_0':s4_0 :: Nat -> 0':s Lemmas: odd(gen_0':s4_0(*(2, n6_0))) -> false, rt in Omega(1 + n6_0) Generator Equations: gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: cond