/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (10) CpxRNTS (11) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxRNTS (13) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) IntTrsBoundProof [UPPER BOUND(ID), 131 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 45 ms] (20) CpxRNTS (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 321 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 125 ms] (26) CpxRNTS (27) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 390 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 267 ms] (32) CpxRNTS (33) FinalProof [FINISHED, 0 ms] (34) BOUNDS(1, n^2) (35) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (36) TRS for Loop Detection (37) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (38) BEST (39) proven lower bound (40) LowerBoundPropagationProof [FINISHED, 0 ms] (41) BOUNDS(n^1, INF) (42) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: cond(true, x, y) -> cond(gr(x, y), p(x), y) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) p(0) -> 0 p(s(x)) -> x S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: cond(true, x, y) -> cond(gr(x, y), p(x), y) [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] p(0) -> 0 [1] p(s(x)) -> x [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond(true, x, y) -> cond(gr(x, y), p(x), y) [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] p(0) -> 0 [1] p(s(x)) -> x [1] The TRS has the following type information: cond :: true:false -> 0:s -> 0:s -> cond true :: true:false gr :: 0:s -> 0:s -> true:false p :: 0:s -> 0:s 0 :: 0:s false :: true:false s :: 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: cond_3 (c) The following functions are completely defined: gr_2 p_1 Due to the following rules being added: none And the following fresh constants: const ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond(true, x, y) -> cond(gr(x, y), p(x), y) [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] p(0) -> 0 [1] p(s(x)) -> x [1] The TRS has the following type information: cond :: true:false -> 0:s -> 0:s -> cond true :: true:false gr :: 0:s -> 0:s -> true:false p :: 0:s -> 0:s 0 :: 0:s false :: true:false s :: 0:s -> 0:s const :: cond Rewrite Strategy: INNERMOST ---------------------------------------- (7) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond(true, 0, y) -> cond(false, 0, y) [3] cond(true, s(x'), 0) -> cond(true, x', 0) [3] cond(true, s(x''), s(y')) -> cond(gr(x'', y'), x'', s(y')) [3] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] p(0) -> 0 [1] p(s(x)) -> x [1] The TRS has the following type information: cond :: true:false -> 0:s -> 0:s -> cond true :: true:false gr :: 0:s -> 0:s -> true:false p :: 0:s -> 0:s 0 :: 0:s false :: true:false s :: 0:s -> 0:s const :: cond Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: true => 1 0 => 0 false => 0 const => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: cond(z, z', z'') -{ 3 }-> cond(gr(x'', y'), x'', 1 + y') :|: z' = 1 + x'', z = 1, y' >= 0, x'' >= 0, z'' = 1 + y' cond(z, z', z'') -{ 3 }-> cond(1, x', 0) :|: z'' = 0, z' = 1 + x', z = 1, x' >= 0 cond(z, z', z'') -{ 3 }-> cond(0, 0, y) :|: z'' = y, z = 1, y >= 0, z' = 0 gr(z, z') -{ 1 }-> gr(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x gr(z, z') -{ 1 }-> 1 :|: x >= 0, z = 1 + x, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x p(z) -{ 1 }-> 0 :|: z = 0 ---------------------------------------- (11) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: cond(z, z', z'') -{ 3 }-> cond(gr(z' - 1, z'' - 1), z' - 1, 1 + (z'' - 1)) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond(z, z', z'') -{ 3 }-> cond(1, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0 cond(z, z', z'') -{ 3 }-> cond(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 ---------------------------------------- (13) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { p } { gr } { cond } ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: cond(z, z', z'') -{ 3 }-> cond(gr(z' - 1, z'' - 1), z' - 1, 1 + (z'' - 1)) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond(z, z', z'') -{ 3 }-> cond(1, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0 cond(z, z', z'') -{ 3 }-> cond(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {gr}, {cond} ---------------------------------------- (15) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: cond(z, z', z'') -{ 3 }-> cond(gr(z' - 1, z'' - 1), z' - 1, 1 + (z'' - 1)) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond(z, z', z'') -{ 3 }-> cond(1, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0 cond(z, z', z'') -{ 3 }-> cond(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {gr}, {cond} ---------------------------------------- (17) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: p after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: cond(z, z', z'') -{ 3 }-> cond(gr(z' - 1, z'' - 1), z' - 1, 1 + (z'' - 1)) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond(z, z', z'') -{ 3 }-> cond(1, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0 cond(z, z', z'') -{ 3 }-> cond(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {gr}, {cond} Previous analysis results are: p: runtime: ?, size: O(n^1) [z] ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: p after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: cond(z, z', z'') -{ 3 }-> cond(gr(z' - 1, z'' - 1), z' - 1, 1 + (z'' - 1)) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond(z, z', z'') -{ 3 }-> cond(1, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0 cond(z, z', z'') -{ 3 }-> cond(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {gr}, {cond} Previous analysis results are: p: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (21) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: cond(z, z', z'') -{ 3 }-> cond(gr(z' - 1, z'' - 1), z' - 1, 1 + (z'' - 1)) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond(z, z', z'') -{ 3 }-> cond(1, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0 cond(z, z', z'') -{ 3 }-> cond(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {gr}, {cond} Previous analysis results are: p: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: gr after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: cond(z, z', z'') -{ 3 }-> cond(gr(z' - 1, z'' - 1), z' - 1, 1 + (z'' - 1)) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond(z, z', z'') -{ 3 }-> cond(1, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0 cond(z, z', z'') -{ 3 }-> cond(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {gr}, {cond} Previous analysis results are: p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: ?, size: O(1) [1] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: gr after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z' ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: cond(z, z', z'') -{ 3 }-> cond(gr(z' - 1, z'' - 1), z' - 1, 1 + (z'' - 1)) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond(z, z', z'') -{ 3 }-> cond(1, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0 cond(z, z', z'') -{ 3 }-> cond(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {cond} Previous analysis results are: p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: O(n^1) [2 + z'], size: O(1) [1] ---------------------------------------- (27) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: cond(z, z', z'') -{ 4 + z'' }-> cond(s, z' - 1, 1 + (z'' - 1)) :|: s >= 0, s <= 1, z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond(z, z', z'') -{ 3 }-> cond(1, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0 cond(z, z', z'') -{ 3 }-> cond(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 gr(z, z') -{ 2 + z' }-> s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {cond} Previous analysis results are: p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: O(n^1) [2 + z'], size: O(1) [1] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: cond after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: cond(z, z', z'') -{ 4 + z'' }-> cond(s, z' - 1, 1 + (z'' - 1)) :|: s >= 0, s <= 1, z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond(z, z', z'') -{ 3 }-> cond(1, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0 cond(z, z', z'') -{ 3 }-> cond(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 gr(z, z') -{ 2 + z' }-> s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {cond} Previous analysis results are: p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: O(n^1) [2 + z'], size: O(1) [1] cond: runtime: ?, size: O(1) [0] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: cond after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 3 + 4*z' + z'*z'' ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: cond(z, z', z'') -{ 4 + z'' }-> cond(s, z' - 1, 1 + (z'' - 1)) :|: s >= 0, s <= 1, z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond(z, z', z'') -{ 3 }-> cond(1, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0 cond(z, z', z'') -{ 3 }-> cond(0, 0, z'') :|: z = 1, z'' >= 0, z' = 0 gr(z, z') -{ 2 + z' }-> s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: Previous analysis results are: p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: O(n^1) [2 + z'], size: O(1) [1] cond: runtime: O(n^2) [3 + 4*z' + z'*z''], size: O(1) [0] ---------------------------------------- (33) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (34) BOUNDS(1, n^2) ---------------------------------------- (35) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (36) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: cond(true, x, y) -> cond(gr(x, y), p(x), y) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) p(0) -> 0 p(s(x)) -> x S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (37) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence gr(s(x), s(y)) ->^+ gr(x, y) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x / s(x), y / s(y)]. The result substitution is [ ]. ---------------------------------------- (38) Complex Obligation (BEST) ---------------------------------------- (39) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: cond(true, x, y) -> cond(gr(x, y), p(x), y) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) p(0) -> 0 p(s(x)) -> x S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (40) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (41) BOUNDS(n^1, INF) ---------------------------------------- (42) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: cond(true, x, y) -> cond(gr(x, y), p(x), y) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) p(0) -> 0 p(s(x)) -> x S is empty. Rewrite Strategy: INNERMOST