/export/starexec/sandbox/solver/bin/starexec_run_tct_rci /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1),?) * Step 1: Sum. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: cond1(true(),x,y) -> cond2(gr(x,y),x,y) cond2(false(),x,y) -> cond1(gr0(x),p(x),y) cond2(true(),x,y) -> cond1(gr0(x),y,y) gr(0(),x) -> false() gr(s(x),0()) -> true() gr(s(x),s(y)) -> gr(x,y) gr0(0()) -> false() gr0(s(x)) -> true() p(0()) -> 0() p(s(x)) -> x - Signature: {cond1/3,cond2/3,gr/2,gr0/1,p/1} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {cond1,cond2,gr,gr0,p} and constructors {0,false,s,true} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: Sum. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: cond1(true(),x,y) -> cond2(gr(x,y),x,y) cond2(false(),x,y) -> cond1(gr0(x),p(x),y) cond2(true(),x,y) -> cond1(gr0(x),y,y) gr(0(),x) -> false() gr(s(x),0()) -> true() gr(s(x),s(y)) -> gr(x,y) gr0(0()) -> false() gr0(s(x)) -> true() p(0()) -> 0() p(s(x)) -> x - Signature: {cond1/3,cond2/3,gr/2,gr0/1,p/1} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {cond1,cond2,gr,gr0,p} and constructors {0,false,s,true} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:2: DecreasingLoops. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: cond1(true(),x,y) -> cond2(gr(x,y),x,y) cond2(false(),x,y) -> cond1(gr0(x),p(x),y) cond2(true(),x,y) -> cond1(gr0(x),y,y) gr(0(),x) -> false() gr(s(x),0()) -> true() gr(s(x),s(y)) -> gr(x,y) gr0(0()) -> false() gr0(s(x)) -> true() p(0()) -> 0() p(s(x)) -> x - Signature: {cond1/3,cond2/3,gr/2,gr0/1,p/1} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {cond1,cond2,gr,gr0,p} and constructors {0,false,s,true} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: gr(x,y){x -> s(x),y -> s(y)} = gr(s(x),s(y)) ->^+ gr(x,y) = C[gr(x,y) = gr(x,y){}] ** Step 1.b:1: DependencyPairs. MAYBE + Considered Problem: - Strict TRS: cond1(true(),x,y) -> cond2(gr(x,y),x,y) cond2(false(),x,y) -> cond1(gr0(x),p(x),y) cond2(true(),x,y) -> cond1(gr0(x),y,y) gr(0(),x) -> false() gr(s(x),0()) -> true() gr(s(x),s(y)) -> gr(x,y) gr0(0()) -> false() gr0(s(x)) -> true() p(0()) -> 0() p(s(x)) -> x - Signature: {cond1/3,cond2/3,gr/2,gr0/1,p/1} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {cond1,cond2,gr,gr0,p} and constructors {0,false,s,true} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs cond1#(true(),x,y) -> c_1(cond2#(gr(x,y),x,y),gr#(x,y)) cond2#(false(),x,y) -> c_2(cond1#(gr0(x),p(x),y),gr0#(x),p#(x)) cond2#(true(),x,y) -> c_3(cond1#(gr0(x),y,y),gr0#(x)) gr#(0(),x) -> c_4() gr#(s(x),0()) -> c_5() gr#(s(x),s(y)) -> c_6(gr#(x,y)) gr0#(0()) -> c_7() gr0#(s(x)) -> c_8() p#(0()) -> c_9() p#(s(x)) -> c_10() Weak DPs and mark the set of starting terms. ** Step 1.b:2: PredecessorEstimation. MAYBE + Considered Problem: - Strict DPs: cond1#(true(),x,y) -> c_1(cond2#(gr(x,y),x,y),gr#(x,y)) cond2#(false(),x,y) -> c_2(cond1#(gr0(x),p(x),y),gr0#(x),p#(x)) cond2#(true(),x,y) -> c_3(cond1#(gr0(x),y,y),gr0#(x)) gr#(0(),x) -> c_4() gr#(s(x),0()) -> c_5() gr#(s(x),s(y)) -> c_6(gr#(x,y)) gr0#(0()) -> c_7() gr0#(s(x)) -> c_8() p#(0()) -> c_9() p#(s(x)) -> c_10() - Weak TRS: cond1(true(),x,y) -> cond2(gr(x,y),x,y) cond2(false(),x,y) -> cond1(gr0(x),p(x),y) cond2(true(),x,y) -> cond1(gr0(x),y,y) gr(0(),x) -> false() gr(s(x),0()) -> true() gr(s(x),s(y)) -> gr(x,y) gr0(0()) -> false() gr0(s(x)) -> true() p(0()) -> 0() p(s(x)) -> x - Signature: {cond1/3,cond2/3,gr/2,gr0/1,p/1,cond1#/3,cond2#/3,gr#/2,gr0#/1,p#/1} / {0/0,false/0,s/1,true/0,c_1/2,c_2/3 ,c_3/2,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {cond1#,cond2#,gr#,gr0#,p#} and constructors {0,false,s ,true} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {4,5,7,8,9,10} by application of Pre({4,5,7,8,9,10}) = {1,2,3,6}. Here rules are labelled as follows: 1: cond1#(true(),x,y) -> c_1(cond2#(gr(x,y),x,y),gr#(x,y)) 2: cond2#(false(),x,y) -> c_2(cond1#(gr0(x),p(x),y),gr0#(x),p#(x)) 3: cond2#(true(),x,y) -> c_3(cond1#(gr0(x),y,y),gr0#(x)) 4: gr#(0(),x) -> c_4() 5: gr#(s(x),0()) -> c_5() 6: gr#(s(x),s(y)) -> c_6(gr#(x,y)) 7: gr0#(0()) -> c_7() 8: gr0#(s(x)) -> c_8() 9: p#(0()) -> c_9() 10: p#(s(x)) -> c_10() ** Step 1.b:3: RemoveWeakSuffixes. MAYBE + Considered Problem: - Strict DPs: cond1#(true(),x,y) -> c_1(cond2#(gr(x,y),x,y),gr#(x,y)) cond2#(false(),x,y) -> c_2(cond1#(gr0(x),p(x),y),gr0#(x),p#(x)) cond2#(true(),x,y) -> c_3(cond1#(gr0(x),y,y),gr0#(x)) gr#(s(x),s(y)) -> c_6(gr#(x,y)) - Weak DPs: gr#(0(),x) -> c_4() gr#(s(x),0()) -> c_5() gr0#(0()) -> c_7() gr0#(s(x)) -> c_8() p#(0()) -> c_9() p#(s(x)) -> c_10() - Weak TRS: cond1(true(),x,y) -> cond2(gr(x,y),x,y) cond2(false(),x,y) -> cond1(gr0(x),p(x),y) cond2(true(),x,y) -> cond1(gr0(x),y,y) gr(0(),x) -> false() gr(s(x),0()) -> true() gr(s(x),s(y)) -> gr(x,y) gr0(0()) -> false() gr0(s(x)) -> true() p(0()) -> 0() p(s(x)) -> x - Signature: {cond1/3,cond2/3,gr/2,gr0/1,p/1,cond1#/3,cond2#/3,gr#/2,gr0#/1,p#/1} / {0/0,false/0,s/1,true/0,c_1/2,c_2/3 ,c_3/2,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {cond1#,cond2#,gr#,gr0#,p#} and constructors {0,false,s ,true} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:cond1#(true(),x,y) -> c_1(cond2#(gr(x,y),x,y),gr#(x,y)) -->_2 gr#(s(x),s(y)) -> c_6(gr#(x,y)):4 -->_1 cond2#(true(),x,y) -> c_3(cond1#(gr0(x),y,y),gr0#(x)):3 -->_1 cond2#(false(),x,y) -> c_2(cond1#(gr0(x),p(x),y),gr0#(x),p#(x)):2 -->_2 gr#(s(x),0()) -> c_5():6 -->_2 gr#(0(),x) -> c_4():5 2:S:cond2#(false(),x,y) -> c_2(cond1#(gr0(x),p(x),y),gr0#(x),p#(x)) -->_3 p#(s(x)) -> c_10():10 -->_3 p#(0()) -> c_9():9 -->_2 gr0#(s(x)) -> c_8():8 -->_2 gr0#(0()) -> c_7():7 -->_1 cond1#(true(),x,y) -> c_1(cond2#(gr(x,y),x,y),gr#(x,y)):1 3:S:cond2#(true(),x,y) -> c_3(cond1#(gr0(x),y,y),gr0#(x)) -->_2 gr0#(s(x)) -> c_8():8 -->_2 gr0#(0()) -> c_7():7 -->_1 cond1#(true(),x,y) -> c_1(cond2#(gr(x,y),x,y),gr#(x,y)):1 4:S:gr#(s(x),s(y)) -> c_6(gr#(x,y)) -->_1 gr#(s(x),0()) -> c_5():6 -->_1 gr#(0(),x) -> c_4():5 -->_1 gr#(s(x),s(y)) -> c_6(gr#(x,y)):4 5:W:gr#(0(),x) -> c_4() 6:W:gr#(s(x),0()) -> c_5() 7:W:gr0#(0()) -> c_7() 8:W:gr0#(s(x)) -> c_8() 9:W:p#(0()) -> c_9() 10:W:p#(s(x)) -> c_10() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 9: p#(0()) -> c_9() 10: p#(s(x)) -> c_10() 7: gr0#(0()) -> c_7() 8: gr0#(s(x)) -> c_8() 5: gr#(0(),x) -> c_4() 6: gr#(s(x),0()) -> c_5() ** Step 1.b:4: SimplifyRHS. MAYBE + Considered Problem: - Strict DPs: cond1#(true(),x,y) -> c_1(cond2#(gr(x,y),x,y),gr#(x,y)) cond2#(false(),x,y) -> c_2(cond1#(gr0(x),p(x),y),gr0#(x),p#(x)) cond2#(true(),x,y) -> c_3(cond1#(gr0(x),y,y),gr0#(x)) gr#(s(x),s(y)) -> c_6(gr#(x,y)) - Weak TRS: cond1(true(),x,y) -> cond2(gr(x,y),x,y) cond2(false(),x,y) -> cond1(gr0(x),p(x),y) cond2(true(),x,y) -> cond1(gr0(x),y,y) gr(0(),x) -> false() gr(s(x),0()) -> true() gr(s(x),s(y)) -> gr(x,y) gr0(0()) -> false() gr0(s(x)) -> true() p(0()) -> 0() p(s(x)) -> x - Signature: {cond1/3,cond2/3,gr/2,gr0/1,p/1,cond1#/3,cond2#/3,gr#/2,gr0#/1,p#/1} / {0/0,false/0,s/1,true/0,c_1/2,c_2/3 ,c_3/2,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {cond1#,cond2#,gr#,gr0#,p#} and constructors {0,false,s ,true} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:cond1#(true(),x,y) -> c_1(cond2#(gr(x,y),x,y),gr#(x,y)) -->_2 gr#(s(x),s(y)) -> c_6(gr#(x,y)):4 -->_1 cond2#(true(),x,y) -> c_3(cond1#(gr0(x),y,y),gr0#(x)):3 -->_1 cond2#(false(),x,y) -> c_2(cond1#(gr0(x),p(x),y),gr0#(x),p#(x)):2 2:S:cond2#(false(),x,y) -> c_2(cond1#(gr0(x),p(x),y),gr0#(x),p#(x)) -->_1 cond1#(true(),x,y) -> c_1(cond2#(gr(x,y),x,y),gr#(x,y)):1 3:S:cond2#(true(),x,y) -> c_3(cond1#(gr0(x),y,y),gr0#(x)) -->_1 cond1#(true(),x,y) -> c_1(cond2#(gr(x,y),x,y),gr#(x,y)):1 4:S:gr#(s(x),s(y)) -> c_6(gr#(x,y)) -->_1 gr#(s(x),s(y)) -> c_6(gr#(x,y)):4 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: cond2#(false(),x,y) -> c_2(cond1#(gr0(x),p(x),y)) cond2#(true(),x,y) -> c_3(cond1#(gr0(x),y,y)) ** Step 1.b:5: UsableRules. MAYBE + Considered Problem: - Strict DPs: cond1#(true(),x,y) -> c_1(cond2#(gr(x,y),x,y),gr#(x,y)) cond2#(false(),x,y) -> c_2(cond1#(gr0(x),p(x),y)) cond2#(true(),x,y) -> c_3(cond1#(gr0(x),y,y)) gr#(s(x),s(y)) -> c_6(gr#(x,y)) - Weak TRS: cond1(true(),x,y) -> cond2(gr(x,y),x,y) cond2(false(),x,y) -> cond1(gr0(x),p(x),y) cond2(true(),x,y) -> cond1(gr0(x),y,y) gr(0(),x) -> false() gr(s(x),0()) -> true() gr(s(x),s(y)) -> gr(x,y) gr0(0()) -> false() gr0(s(x)) -> true() p(0()) -> 0() p(s(x)) -> x - Signature: {cond1/3,cond2/3,gr/2,gr0/1,p/1,cond1#/3,cond2#/3,gr#/2,gr0#/1,p#/1} / {0/0,false/0,s/1,true/0,c_1/2,c_2/1 ,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {cond1#,cond2#,gr#,gr0#,p#} and constructors {0,false,s ,true} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: gr(0(),x) -> false() gr(s(x),0()) -> true() gr(s(x),s(y)) -> gr(x,y) gr0(0()) -> false() gr0(s(x)) -> true() p(0()) -> 0() p(s(x)) -> x cond1#(true(),x,y) -> c_1(cond2#(gr(x,y),x,y),gr#(x,y)) cond2#(false(),x,y) -> c_2(cond1#(gr0(x),p(x),y)) cond2#(true(),x,y) -> c_3(cond1#(gr0(x),y,y)) gr#(s(x),s(y)) -> c_6(gr#(x,y)) ** Step 1.b:6: DecomposeDG. MAYBE + Considered Problem: - Strict DPs: cond1#(true(),x,y) -> c_1(cond2#(gr(x,y),x,y),gr#(x,y)) cond2#(false(),x,y) -> c_2(cond1#(gr0(x),p(x),y)) cond2#(true(),x,y) -> c_3(cond1#(gr0(x),y,y)) gr#(s(x),s(y)) -> c_6(gr#(x,y)) - Weak TRS: gr(0(),x) -> false() gr(s(x),0()) -> true() gr(s(x),s(y)) -> gr(x,y) gr0(0()) -> false() gr0(s(x)) -> true() p(0()) -> 0() p(s(x)) -> x - Signature: {cond1/3,cond2/3,gr/2,gr0/1,p/1,cond1#/3,cond2#/3,gr#/2,gr0#/1,p#/1} / {0/0,false/0,s/1,true/0,c_1/2,c_2/1 ,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {cond1#,cond2#,gr#,gr0#,p#} and constructors {0,false,s ,true} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Nothing, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component cond1#(true(),x,y) -> c_1(cond2#(gr(x,y),x,y),gr#(x,y)) cond2#(false(),x,y) -> c_2(cond1#(gr0(x),p(x),y)) cond2#(true(),x,y) -> c_3(cond1#(gr0(x),y,y)) and a lower component gr#(s(x),s(y)) -> c_6(gr#(x,y)) Further, following extension rules are added to the lower component. cond1#(true(),x,y) -> cond2#(gr(x,y),x,y) cond1#(true(),x,y) -> gr#(x,y) cond2#(false(),x,y) -> cond1#(gr0(x),p(x),y) cond2#(true(),x,y) -> cond1#(gr0(x),y,y) *** Step 1.b:6.a:1: SimplifyRHS. MAYBE + Considered Problem: - Strict DPs: cond1#(true(),x,y) -> c_1(cond2#(gr(x,y),x,y),gr#(x,y)) cond2#(false(),x,y) -> c_2(cond1#(gr0(x),p(x),y)) cond2#(true(),x,y) -> c_3(cond1#(gr0(x),y,y)) - Weak TRS: gr(0(),x) -> false() gr(s(x),0()) -> true() gr(s(x),s(y)) -> gr(x,y) gr0(0()) -> false() gr0(s(x)) -> true() p(0()) -> 0() p(s(x)) -> x - Signature: {cond1/3,cond2/3,gr/2,gr0/1,p/1,cond1#/3,cond2#/3,gr#/2,gr0#/1,p#/1} / {0/0,false/0,s/1,true/0,c_1/2,c_2/1 ,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {cond1#,cond2#,gr#,gr0#,p#} and constructors {0,false,s ,true} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:cond1#(true(),x,y) -> c_1(cond2#(gr(x,y),x,y),gr#(x,y)) -->_1 cond2#(true(),x,y) -> c_3(cond1#(gr0(x),y,y)):3 -->_1 cond2#(false(),x,y) -> c_2(cond1#(gr0(x),p(x),y)):2 2:S:cond2#(false(),x,y) -> c_2(cond1#(gr0(x),p(x),y)) -->_1 cond1#(true(),x,y) -> c_1(cond2#(gr(x,y),x,y),gr#(x,y)):1 3:S:cond2#(true(),x,y) -> c_3(cond1#(gr0(x),y,y)) -->_1 cond1#(true(),x,y) -> c_1(cond2#(gr(x,y),x,y),gr#(x,y)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: cond1#(true(),x,y) -> c_1(cond2#(gr(x,y),x,y)) *** Step 1.b:6.a:2: Failure MAYBE + Considered Problem: - Strict DPs: cond1#(true(),x,y) -> c_1(cond2#(gr(x,y),x,y)) cond2#(false(),x,y) -> c_2(cond1#(gr0(x),p(x),y)) cond2#(true(),x,y) -> c_3(cond1#(gr0(x),y,y)) - Weak TRS: gr(0(),x) -> false() gr(s(x),0()) -> true() gr(s(x),s(y)) -> gr(x,y) gr0(0()) -> false() gr0(s(x)) -> true() p(0()) -> 0() p(s(x)) -> x - Signature: {cond1/3,cond2/3,gr/2,gr0/1,p/1,cond1#/3,cond2#/3,gr#/2,gr0#/1,p#/1} / {0/0,false/0,s/1,true/0,c_1/1,c_2/1 ,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {cond1#,cond2#,gr#,gr0#,p#} and constructors {0,false,s ,true} + Applied Processor: EmptyProcessor + Details: The problem is still open. *** Step 1.b:6.b:1: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: gr#(s(x),s(y)) -> c_6(gr#(x,y)) - Weak DPs: cond1#(true(),x,y) -> cond2#(gr(x,y),x,y) cond1#(true(),x,y) -> gr#(x,y) cond2#(false(),x,y) -> cond1#(gr0(x),p(x),y) cond2#(true(),x,y) -> cond1#(gr0(x),y,y) - Weak TRS: gr(0(),x) -> false() gr(s(x),0()) -> true() gr(s(x),s(y)) -> gr(x,y) gr0(0()) -> false() gr0(s(x)) -> true() p(0()) -> 0() p(s(x)) -> x - Signature: {cond1/3,cond2/3,gr/2,gr0/1,p/1,cond1#/3,cond2#/3,gr#/2,gr0#/1,p#/1} / {0/0,false/0,s/1,true/0,c_1/2,c_2/1 ,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {cond1#,cond2#,gr#,gr0#,p#} and constructors {0,false,s ,true} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_6) = {1} Following symbols are considered usable: {gr,cond1#,cond2#,gr#,gr0#,p#} TcT has computed the following interpretation: p(0) = [0] p(cond1) = [8] x2 + [1] p(cond2) = [8] x1 + [1] x2 + [0] p(false) = [1] p(gr) = [1] p(gr0) = [0] p(p) = [2] x1 + [2] p(s) = [1] x1 + [8] p(true) = [1] p(cond1#) = [1] x3 + [13] p(cond2#) = [8] x1 + [1] x3 + [5] p(gr#) = [1] x2 + [0] p(gr0#) = [1] x1 + [1] p(p#) = [1] x1 + [0] p(c_1) = [4] x2 + [0] p(c_2) = [1] x1 + [0] p(c_3) = [2] x1 + [8] p(c_4) = [1] p(c_5) = [1] p(c_6) = [1] x1 + [4] p(c_7) = [1] p(c_8) = [0] p(c_9) = [1] p(c_10) = [1] Following rules are strictly oriented: gr#(s(x),s(y)) = [1] y + [8] > [1] y + [4] = c_6(gr#(x,y)) Following rules are (at-least) weakly oriented: cond1#(true(),x,y) = [1] y + [13] >= [1] y + [13] = cond2#(gr(x,y),x,y) cond1#(true(),x,y) = [1] y + [13] >= [1] y + [0] = gr#(x,y) cond2#(false(),x,y) = [1] y + [13] >= [1] y + [13] = cond1#(gr0(x),p(x),y) cond2#(true(),x,y) = [1] y + [13] >= [1] y + [13] = cond1#(gr0(x),y,y) gr(0(),x) = [1] >= [1] = false() gr(s(x),0()) = [1] >= [1] = true() gr(s(x),s(y)) = [1] >= [1] = gr(x,y) *** Step 1.b:6.b:2: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: cond1#(true(),x,y) -> cond2#(gr(x,y),x,y) cond1#(true(),x,y) -> gr#(x,y) cond2#(false(),x,y) -> cond1#(gr0(x),p(x),y) cond2#(true(),x,y) -> cond1#(gr0(x),y,y) gr#(s(x),s(y)) -> c_6(gr#(x,y)) - Weak TRS: gr(0(),x) -> false() gr(s(x),0()) -> true() gr(s(x),s(y)) -> gr(x,y) gr0(0()) -> false() gr0(s(x)) -> true() p(0()) -> 0() p(s(x)) -> x - Signature: {cond1/3,cond2/3,gr/2,gr0/1,p/1,cond1#/3,cond2#/3,gr#/2,gr0#/1,p#/1} / {0/0,false/0,s/1,true/0,c_1/2,c_2/1 ,c_3/1,c_4/0,c_5/0,c_6/1,c_7/0,c_8/0,c_9/0,c_10/0} - Obligation: innermost runtime complexity wrt. defined symbols {cond1#,cond2#,gr#,gr0#,p#} and constructors {0,false,s ,true} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),?)