/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (10) CpxRNTS (11) InliningProof [UPPER BOUND(ID), 256 ms] (12) CpxRNTS (13) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 195 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 78 ms] (22) CpxRNTS (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 342 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 136 ms] (28) CpxRNTS (29) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 189 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 24 ms] (34) CpxRNTS (35) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 331 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 175 ms] (40) CpxRNTS (41) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 1505 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 857 ms] (46) CpxRNTS (47) FinalProof [FINISHED, 0 ms] (48) BOUNDS(1, n^1) (49) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (50) TRS for Loop Detection (51) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (52) BEST (53) proven lower bound (54) LowerBoundPropagationProof [FINISHED, 0 ms] (55) BOUNDS(n^1, INF) (56) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(y, 0), x, y) cond2(true, x, y) -> cond2(gr(y, 0), p(x), p(y)) cond2(false, x, y) -> cond1(and(eq(x, y), gr(x, 0)), x, y) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) p(0) -> 0 p(s(x)) -> x eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(x)) -> false eq(s(x), s(y)) -> eq(x, y) and(true, true) -> true and(false, x) -> false and(x, false) -> false S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(y, 0), x, y) [1] cond2(true, x, y) -> cond2(gr(y, 0), p(x), p(y)) [1] cond2(false, x, y) -> cond1(and(eq(x, y), gr(x, 0)), x, y) [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] p(0) -> 0 [1] p(s(x)) -> x [1] eq(0, 0) -> true [1] eq(s(x), 0) -> false [1] eq(0, s(x)) -> false [1] eq(s(x), s(y)) -> eq(x, y) [1] and(true, true) -> true [1] and(false, x) -> false [1] and(x, false) -> false [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(y, 0), x, y) [1] cond2(true, x, y) -> cond2(gr(y, 0), p(x), p(y)) [1] cond2(false, x, y) -> cond1(and(eq(x, y), gr(x, 0)), x, y) [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] p(0) -> 0 [1] p(s(x)) -> x [1] eq(0, 0) -> true [1] eq(s(x), 0) -> false [1] eq(0, s(x)) -> false [1] eq(s(x), s(y)) -> eq(x, y) [1] and(true, true) -> true [1] and(false, x) -> false [1] and(x, false) -> false [1] The TRS has the following type information: cond1 :: true:false -> 0:s -> 0:s -> cond1:cond2 true :: true:false cond2 :: true:false -> 0:s -> 0:s -> cond1:cond2 gr :: 0:s -> 0:s -> true:false 0 :: 0:s p :: 0:s -> 0:s false :: true:false and :: true:false -> true:false -> true:false eq :: 0:s -> 0:s -> true:false s :: 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: cond1_3 cond2_3 (c) The following functions are completely defined: gr_2 p_1 and_2 eq_2 Due to the following rules being added: none And the following fresh constants: const ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(y, 0), x, y) [1] cond2(true, x, y) -> cond2(gr(y, 0), p(x), p(y)) [1] cond2(false, x, y) -> cond1(and(eq(x, y), gr(x, 0)), x, y) [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] p(0) -> 0 [1] p(s(x)) -> x [1] eq(0, 0) -> true [1] eq(s(x), 0) -> false [1] eq(0, s(x)) -> false [1] eq(s(x), s(y)) -> eq(x, y) [1] and(true, true) -> true [1] and(false, x) -> false [1] and(x, false) -> false [1] The TRS has the following type information: cond1 :: true:false -> 0:s -> 0:s -> cond1:cond2 true :: true:false cond2 :: true:false -> 0:s -> 0:s -> cond1:cond2 gr :: 0:s -> 0:s -> true:false 0 :: 0:s p :: 0:s -> 0:s false :: true:false and :: true:false -> true:false -> true:false eq :: 0:s -> 0:s -> true:false s :: 0:s -> 0:s const :: cond1:cond2 Rewrite Strategy: INNERMOST ---------------------------------------- (7) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond1(true, x, 0) -> cond2(false, x, 0) [2] cond1(true, x, s(x')) -> cond2(true, x, s(x')) [2] cond2(true, 0, 0) -> cond2(false, 0, 0) [4] cond2(true, s(x1), 0) -> cond2(false, x1, 0) [4] cond2(true, 0, s(x'')) -> cond2(true, 0, x'') [4] cond2(true, s(x2), s(x'')) -> cond2(true, x2, x'') [4] cond2(false, 0, 0) -> cond1(and(true, false), 0, 0) [3] cond2(false, s(x3), 0) -> cond1(and(false, true), s(x3), 0) [3] cond2(false, 0, s(x4)) -> cond1(and(false, false), 0, s(x4)) [3] cond2(false, s(x5), s(y')) -> cond1(and(eq(x5, y'), true), s(x5), s(y')) [3] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] p(0) -> 0 [1] p(s(x)) -> x [1] eq(0, 0) -> true [1] eq(s(x), 0) -> false [1] eq(0, s(x)) -> false [1] eq(s(x), s(y)) -> eq(x, y) [1] and(true, true) -> true [1] and(false, x) -> false [1] and(x, false) -> false [1] The TRS has the following type information: cond1 :: true:false -> 0:s -> 0:s -> cond1:cond2 true :: true:false cond2 :: true:false -> 0:s -> 0:s -> cond1:cond2 gr :: 0:s -> 0:s -> true:false 0 :: 0:s p :: 0:s -> 0:s false :: true:false and :: true:false -> true:false -> true:false eq :: 0:s -> 0:s -> true:false s :: 0:s -> 0:s const :: cond1:cond2 Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: true => 1 0 => 0 false => 0 const => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: x >= 0, z = x, z' = 0 cond1(z, z', z'') -{ 2 }-> cond2(1, x, 1 + x') :|: z' = x, z = 1, z'' = 1 + x', x >= 0, x' >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, x, 0) :|: z'' = 0, z' = x, z = 1, x >= 0 cond2(z, z', z'') -{ 4 }-> cond2(1, x2, x'') :|: z' = 1 + x2, z = 1, z'' = 1 + x'', x'' >= 0, x2 >= 0 cond2(z, z', z'') -{ 4 }-> cond2(1, 0, x'') :|: z = 1, z'' = 1 + x'', x'' >= 0, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(0, x1, 0) :|: z'' = 0, x1 >= 0, z = 1, z' = 1 + x1 cond2(z, z', z'') -{ 4 }-> cond2(0, 0, 0) :|: z'' = 0, z = 1, z' = 0 cond2(z, z', z'') -{ 3 }-> cond1(and(eq(x5, y'), 1), 1 + x5, 1 + y') :|: x5 >= 0, z' = 1 + x5, y' >= 0, z = 0, z'' = 1 + y' cond2(z, z', z'') -{ 3 }-> cond1(and(1, 0), 0, 0) :|: z'' = 0, z = 0, z' = 0 cond2(z, z', z'') -{ 3 }-> cond1(and(0, 1), 1 + x3, 0) :|: z'' = 0, z' = 1 + x3, z = 0, x3 >= 0 cond2(z, z', z'') -{ 3 }-> cond1(and(0, 0), 0, 1 + x4) :|: x4 >= 0, z'' = 1 + x4, z = 0, z' = 0 eq(z, z') -{ 1 }-> eq(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x eq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: x >= 0, z = 1 + x, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z' = 1 + x, x >= 0, z = 0 gr(z, z') -{ 1 }-> gr(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x gr(z, z') -{ 1 }-> 1 :|: x >= 0, z = 1 + x, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x p(z) -{ 1 }-> 0 :|: z = 0 ---------------------------------------- (11) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: x >= 0, z = x, z' = 0 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: x >= 0, z = x, z' = 0 cond1(z, z', z'') -{ 2 }-> cond2(1, x, 1 + x') :|: z' = x, z = 1, z'' = 1 + x', x >= 0, x' >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, x, 0) :|: z'' = 0, z' = x, z = 1, x >= 0 cond2(z, z', z'') -{ 4 }-> cond2(1, x2, x'') :|: z' = 1 + x2, z = 1, z'' = 1 + x'', x'' >= 0, x2 >= 0 cond2(z, z', z'') -{ 4 }-> cond2(1, 0, x'') :|: z = 1, z'' = 1 + x'', x'' >= 0, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(0, x1, 0) :|: z'' = 0, x1 >= 0, z = 1, z' = 1 + x1 cond2(z, z', z'') -{ 4 }-> cond2(0, 0, 0) :|: z'' = 0, z = 1, z' = 0 cond2(z, z', z'') -{ 3 }-> cond1(and(eq(x5, y'), 1), 1 + x5, 1 + y') :|: x5 >= 0, z' = 1 + x5, y' >= 0, z = 0, z'' = 1 + y' cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, x >= 0, 1 = x, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + x4) :|: x4 >= 0, z'' = 1 + x4, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 1 + x3, 0) :|: z'' = 0, z' = 1 + x3, z = 0, x3 >= 0, 1 = x, x >= 0, 0 = 0 eq(z, z') -{ 1 }-> eq(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x eq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: x >= 0, z = 1 + x, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z' = 1 + x, x >= 0, z = 0 gr(z, z') -{ 1 }-> gr(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x gr(z, z') -{ 1 }-> 1 :|: x >= 0, z = 1 + x, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x p(z) -{ 1 }-> 0 :|: z = 0 ---------------------------------------- (13) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 cond1(z, z', z'') -{ 2 }-> cond2(1, z', 1 + (z'' - 1)) :|: z = 1, z' >= 0, z'' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 cond2(z, z', z'') -{ 4 }-> cond2(1, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(1, z' - 1, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond2(z, z', z'') -{ 4 }-> cond2(0, 0, 0) :|: z'' = 0, z = 1, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(0, z' - 1, 0) :|: z'' = 0, z' - 1 >= 0, z = 1 cond2(z, z', z'') -{ 3 }-> cond1(and(eq(z' - 1, z'' - 1), 1), 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, x >= 0, 1 = x, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z = 0, z' - 1 >= 0, 1 = x, x >= 0, 0 = 0 eq(z, z') -{ 1 }-> eq(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 eq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 ---------------------------------------- (15) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { and } { eq } { p } { gr } { cond2, cond1 } ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 cond1(z, z', z'') -{ 2 }-> cond2(1, z', 1 + (z'' - 1)) :|: z = 1, z' >= 0, z'' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 cond2(z, z', z'') -{ 4 }-> cond2(1, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(1, z' - 1, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond2(z, z', z'') -{ 4 }-> cond2(0, 0, 0) :|: z'' = 0, z = 1, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(0, z' - 1, 0) :|: z'' = 0, z' - 1 >= 0, z = 1 cond2(z, z', z'') -{ 3 }-> cond1(and(eq(z' - 1, z'' - 1), 1), 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, x >= 0, 1 = x, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z = 0, z' - 1 >= 0, 1 = x, x >= 0, 0 = 0 eq(z, z') -{ 1 }-> eq(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 eq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {and}, {eq}, {p}, {gr}, {cond2,cond1} ---------------------------------------- (17) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 cond1(z, z', z'') -{ 2 }-> cond2(1, z', 1 + (z'' - 1)) :|: z = 1, z' >= 0, z'' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 cond2(z, z', z'') -{ 4 }-> cond2(1, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(1, z' - 1, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond2(z, z', z'') -{ 4 }-> cond2(0, 0, 0) :|: z'' = 0, z = 1, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(0, z' - 1, 0) :|: z'' = 0, z' - 1 >= 0, z = 1 cond2(z, z', z'') -{ 3 }-> cond1(and(eq(z' - 1, z'' - 1), 1), 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, x >= 0, 1 = x, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z = 0, z' - 1 >= 0, 1 = x, x >= 0, 0 = 0 eq(z, z') -{ 1 }-> eq(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 eq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {and}, {eq}, {p}, {gr}, {cond2,cond1} ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: and after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 cond1(z, z', z'') -{ 2 }-> cond2(1, z', 1 + (z'' - 1)) :|: z = 1, z' >= 0, z'' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 cond2(z, z', z'') -{ 4 }-> cond2(1, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(1, z' - 1, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond2(z, z', z'') -{ 4 }-> cond2(0, 0, 0) :|: z'' = 0, z = 1, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(0, z' - 1, 0) :|: z'' = 0, z' - 1 >= 0, z = 1 cond2(z, z', z'') -{ 3 }-> cond1(and(eq(z' - 1, z'' - 1), 1), 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, x >= 0, 1 = x, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z = 0, z' - 1 >= 0, 1 = x, x >= 0, 0 = 0 eq(z, z') -{ 1 }-> eq(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 eq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {and}, {eq}, {p}, {gr}, {cond2,cond1} Previous analysis results are: and: runtime: ?, size: O(1) [1] ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: and after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 cond1(z, z', z'') -{ 2 }-> cond2(1, z', 1 + (z'' - 1)) :|: z = 1, z' >= 0, z'' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 cond2(z, z', z'') -{ 4 }-> cond2(1, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(1, z' - 1, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond2(z, z', z'') -{ 4 }-> cond2(0, 0, 0) :|: z'' = 0, z = 1, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(0, z' - 1, 0) :|: z'' = 0, z' - 1 >= 0, z = 1 cond2(z, z', z'') -{ 3 }-> cond1(and(eq(z' - 1, z'' - 1), 1), 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, x >= 0, 1 = x, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z = 0, z' - 1 >= 0, 1 = x, x >= 0, 0 = 0 eq(z, z') -{ 1 }-> eq(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 eq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {eq}, {p}, {gr}, {cond2,cond1} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (23) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 cond1(z, z', z'') -{ 2 }-> cond2(1, z', 1 + (z'' - 1)) :|: z = 1, z' >= 0, z'' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 cond2(z, z', z'') -{ 4 }-> cond2(1, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(1, z' - 1, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond2(z, z', z'') -{ 4 }-> cond2(0, 0, 0) :|: z'' = 0, z = 1, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(0, z' - 1, 0) :|: z'' = 0, z' - 1 >= 0, z = 1 cond2(z, z', z'') -{ 3 }-> cond1(and(eq(z' - 1, z'' - 1), 1), 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, x >= 0, 1 = x, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z = 0, z' - 1 >= 0, 1 = x, x >= 0, 0 = 0 eq(z, z') -{ 1 }-> eq(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 eq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {eq}, {p}, {gr}, {cond2,cond1} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: eq after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 cond1(z, z', z'') -{ 2 }-> cond2(1, z', 1 + (z'' - 1)) :|: z = 1, z' >= 0, z'' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 cond2(z, z', z'') -{ 4 }-> cond2(1, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(1, z' - 1, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond2(z, z', z'') -{ 4 }-> cond2(0, 0, 0) :|: z'' = 0, z = 1, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(0, z' - 1, 0) :|: z'' = 0, z' - 1 >= 0, z = 1 cond2(z, z', z'') -{ 3 }-> cond1(and(eq(z' - 1, z'' - 1), 1), 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, x >= 0, 1 = x, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z = 0, z' - 1 >= 0, 1 = x, x >= 0, 0 = 0 eq(z, z') -{ 1 }-> eq(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 eq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {eq}, {p}, {gr}, {cond2,cond1} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] eq: runtime: ?, size: O(1) [1] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: eq after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + z' ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 cond1(z, z', z'') -{ 2 }-> cond2(1, z', 1 + (z'' - 1)) :|: z = 1, z' >= 0, z'' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 cond2(z, z', z'') -{ 4 }-> cond2(1, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(1, z' - 1, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond2(z, z', z'') -{ 4 }-> cond2(0, 0, 0) :|: z'' = 0, z = 1, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(0, z' - 1, 0) :|: z'' = 0, z' - 1 >= 0, z = 1 cond2(z, z', z'') -{ 3 }-> cond1(and(eq(z' - 1, z'' - 1), 1), 1 + (z' - 1), 1 + (z'' - 1)) :|: z' - 1 >= 0, z'' - 1 >= 0, z = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, x >= 0, 1 = x, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z = 0, z' - 1 >= 0, 1 = x, x >= 0, 0 = 0 eq(z, z') -{ 1 }-> eq(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 eq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {gr}, {cond2,cond1} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] eq: runtime: O(n^1) [3 + z'], size: O(1) [1] ---------------------------------------- (29) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 cond1(z, z', z'') -{ 2 }-> cond2(1, z', 1 + (z'' - 1)) :|: z = 1, z' >= 0, z'' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 cond2(z, z', z'') -{ 4 }-> cond2(1, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(1, z' - 1, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond2(z, z', z'') -{ 4 }-> cond2(0, 0, 0) :|: z'' = 0, z = 1, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(0, z' - 1, 0) :|: z'' = 0, z' - 1 >= 0, z = 1 cond2(z, z', z'') -{ 6 + z'' }-> cond1(s'', 1 + (z' - 1), 1 + (z'' - 1)) :|: s' >= 0, s' <= 1, s'' >= 0, s'' <= 1, z' - 1 >= 0, z'' - 1 >= 0, z = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, x >= 0, 1 = x, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z = 0, z' - 1 >= 0, 1 = x, x >= 0, 0 = 0 eq(z, z') -{ 3 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 eq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {gr}, {cond2,cond1} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] eq: runtime: O(n^1) [3 + z'], size: O(1) [1] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: p after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 cond1(z, z', z'') -{ 2 }-> cond2(1, z', 1 + (z'' - 1)) :|: z = 1, z' >= 0, z'' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 cond2(z, z', z'') -{ 4 }-> cond2(1, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(1, z' - 1, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond2(z, z', z'') -{ 4 }-> cond2(0, 0, 0) :|: z'' = 0, z = 1, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(0, z' - 1, 0) :|: z'' = 0, z' - 1 >= 0, z = 1 cond2(z, z', z'') -{ 6 + z'' }-> cond1(s'', 1 + (z' - 1), 1 + (z'' - 1)) :|: s' >= 0, s' <= 1, s'' >= 0, s'' <= 1, z' - 1 >= 0, z'' - 1 >= 0, z = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, x >= 0, 1 = x, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z = 0, z' - 1 >= 0, 1 = x, x >= 0, 0 = 0 eq(z, z') -{ 3 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 eq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {gr}, {cond2,cond1} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] eq: runtime: O(n^1) [3 + z'], size: O(1) [1] p: runtime: ?, size: O(n^1) [z] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: p after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 cond1(z, z', z'') -{ 2 }-> cond2(1, z', 1 + (z'' - 1)) :|: z = 1, z' >= 0, z'' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 cond2(z, z', z'') -{ 4 }-> cond2(1, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(1, z' - 1, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond2(z, z', z'') -{ 4 }-> cond2(0, 0, 0) :|: z'' = 0, z = 1, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(0, z' - 1, 0) :|: z'' = 0, z' - 1 >= 0, z = 1 cond2(z, z', z'') -{ 6 + z'' }-> cond1(s'', 1 + (z' - 1), 1 + (z'' - 1)) :|: s' >= 0, s' <= 1, s'' >= 0, s'' <= 1, z' - 1 >= 0, z'' - 1 >= 0, z = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, x >= 0, 1 = x, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z = 0, z' - 1 >= 0, 1 = x, x >= 0, 0 = 0 eq(z, z') -{ 3 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 eq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {gr}, {cond2,cond1} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] eq: runtime: O(n^1) [3 + z'], size: O(1) [1] p: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (35) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 cond1(z, z', z'') -{ 2 }-> cond2(1, z', 1 + (z'' - 1)) :|: z = 1, z' >= 0, z'' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 cond2(z, z', z'') -{ 4 }-> cond2(1, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(1, z' - 1, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond2(z, z', z'') -{ 4 }-> cond2(0, 0, 0) :|: z'' = 0, z = 1, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(0, z' - 1, 0) :|: z'' = 0, z' - 1 >= 0, z = 1 cond2(z, z', z'') -{ 6 + z'' }-> cond1(s'', 1 + (z' - 1), 1 + (z'' - 1)) :|: s' >= 0, s' <= 1, s'' >= 0, s'' <= 1, z' - 1 >= 0, z'' - 1 >= 0, z = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, x >= 0, 1 = x, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z = 0, z' - 1 >= 0, 1 = x, x >= 0, 0 = 0 eq(z, z') -{ 3 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 eq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {gr}, {cond2,cond1} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] eq: runtime: O(n^1) [3 + z'], size: O(1) [1] p: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: gr after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 cond1(z, z', z'') -{ 2 }-> cond2(1, z', 1 + (z'' - 1)) :|: z = 1, z' >= 0, z'' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 cond2(z, z', z'') -{ 4 }-> cond2(1, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(1, z' - 1, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond2(z, z', z'') -{ 4 }-> cond2(0, 0, 0) :|: z'' = 0, z = 1, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(0, z' - 1, 0) :|: z'' = 0, z' - 1 >= 0, z = 1 cond2(z, z', z'') -{ 6 + z'' }-> cond1(s'', 1 + (z' - 1), 1 + (z'' - 1)) :|: s' >= 0, s' <= 1, s'' >= 0, s'' <= 1, z' - 1 >= 0, z'' - 1 >= 0, z = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, x >= 0, 1 = x, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z = 0, z' - 1 >= 0, 1 = x, x >= 0, 0 = 0 eq(z, z') -{ 3 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 eq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {gr}, {cond2,cond1} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] eq: runtime: O(n^1) [3 + z'], size: O(1) [1] p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: ?, size: O(1) [1] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: gr after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z' ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 cond1(z, z', z'') -{ 2 }-> cond2(1, z', 1 + (z'' - 1)) :|: z = 1, z' >= 0, z'' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 cond2(z, z', z'') -{ 4 }-> cond2(1, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(1, z' - 1, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond2(z, z', z'') -{ 4 }-> cond2(0, 0, 0) :|: z'' = 0, z = 1, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(0, z' - 1, 0) :|: z'' = 0, z' - 1 >= 0, z = 1 cond2(z, z', z'') -{ 6 + z'' }-> cond1(s'', 1 + (z' - 1), 1 + (z'' - 1)) :|: s' >= 0, s' <= 1, s'' >= 0, s'' <= 1, z' - 1 >= 0, z'' - 1 >= 0, z = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, x >= 0, 1 = x, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z = 0, z' - 1 >= 0, 1 = x, x >= 0, 0 = 0 eq(z, z') -{ 3 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 eq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {cond2,cond1} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] eq: runtime: O(n^1) [3 + z'], size: O(1) [1] p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: O(n^1) [2 + z'], size: O(1) [1] ---------------------------------------- (41) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 cond1(z, z', z'') -{ 2 }-> cond2(1, z', 1 + (z'' - 1)) :|: z = 1, z' >= 0, z'' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 cond2(z, z', z'') -{ 4 }-> cond2(1, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(1, z' - 1, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond2(z, z', z'') -{ 4 }-> cond2(0, 0, 0) :|: z'' = 0, z = 1, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(0, z' - 1, 0) :|: z'' = 0, z' - 1 >= 0, z = 1 cond2(z, z', z'') -{ 6 + z'' }-> cond1(s'', 1 + (z' - 1), 1 + (z'' - 1)) :|: s' >= 0, s' <= 1, s'' >= 0, s'' <= 1, z' - 1 >= 0, z'' - 1 >= 0, z = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, x >= 0, 1 = x, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z = 0, z' - 1 >= 0, 1 = x, x >= 0, 0 = 0 eq(z, z') -{ 3 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 eq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 gr(z, z') -{ 2 + z' }-> s1 :|: s1 >= 0, s1 <= 1, z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {cond2,cond1} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] eq: runtime: O(n^1) [3 + z'], size: O(1) [1] p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: O(n^1) [2 + z'], size: O(1) [1] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: cond2 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 Computed SIZE bound using CoFloCo for: cond1 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 cond1(z, z', z'') -{ 2 }-> cond2(1, z', 1 + (z'' - 1)) :|: z = 1, z' >= 0, z'' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 cond2(z, z', z'') -{ 4 }-> cond2(1, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(1, z' - 1, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond2(z, z', z'') -{ 4 }-> cond2(0, 0, 0) :|: z'' = 0, z = 1, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(0, z' - 1, 0) :|: z'' = 0, z' - 1 >= 0, z = 1 cond2(z, z', z'') -{ 6 + z'' }-> cond1(s'', 1 + (z' - 1), 1 + (z'' - 1)) :|: s' >= 0, s' <= 1, s'' >= 0, s'' <= 1, z' - 1 >= 0, z'' - 1 >= 0, z = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, x >= 0, 1 = x, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z = 0, z' - 1 >= 0, 1 = x, x >= 0, 0 = 0 eq(z, z') -{ 3 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 eq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 gr(z, z') -{ 2 + z' }-> s1 :|: s1 >= 0, s1 <= 1, z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {cond2,cond1} Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] eq: runtime: O(n^1) [3 + z'], size: O(1) [1] p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: O(n^1) [2 + z'], size: O(1) [1] cond2: runtime: ?, size: O(1) [0] cond1: runtime: ?, size: O(1) [0] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: cond2 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 19 + 8*z' + 5*z'' Computed RUNTIME bound using CoFloCo for: cond1 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 21 + 8*z' + 5*z'' ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 cond1(z, z', z'') -{ 2 }-> cond2(1, z', 1 + (z'' - 1)) :|: z = 1, z' >= 0, z'' - 1 >= 0 cond1(z, z', z'') -{ 2 }-> cond2(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 cond2(z, z', z'') -{ 4 }-> cond2(1, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(1, z' - 1, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' - 1 >= 0 cond2(z, z', z'') -{ 4 }-> cond2(0, 0, 0) :|: z'' = 0, z = 1, z' = 0 cond2(z, z', z'') -{ 4 }-> cond2(0, z' - 1, 0) :|: z'' = 0, z' - 1 >= 0, z = 1 cond2(z, z', z'') -{ 6 + z'' }-> cond1(s'', 1 + (z' - 1), 1 + (z'' - 1)) :|: s' >= 0, s' <= 1, s'' >= 0, s'' <= 1, z' - 1 >= 0, z'' - 1 >= 0, z = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 0) :|: z'' = 0, z = 0, z' = 0, x >= 0, 1 = x, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 0, 1 + (z'' - 1)) :|: z'' - 1 >= 0, z = 0, z' = 0, 0 = x, x >= 0, 0 = 0 cond2(z, z', z'') -{ 4 }-> cond1(0, 1 + (z' - 1), 0) :|: z'' = 0, z = 0, z' - 1 >= 0, 1 = x, x >= 0, 0 = 0 eq(z, z') -{ 3 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 eq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 eq(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 gr(z, z') -{ 2 + z' }-> s1 :|: s1 >= 0, s1 <= 1, z - 1 >= 0, z' - 1 >= 0 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: Previous analysis results are: and: runtime: O(1) [1], size: O(1) [1] eq: runtime: O(n^1) [3 + z'], size: O(1) [1] p: runtime: O(1) [1], size: O(n^1) [z] gr: runtime: O(n^1) [2 + z'], size: O(1) [1] cond2: runtime: O(n^1) [19 + 8*z' + 5*z''], size: O(1) [0] cond1: runtime: O(n^1) [21 + 8*z' + 5*z''], size: O(1) [0] ---------------------------------------- (47) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (48) BOUNDS(1, n^1) ---------------------------------------- (49) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (50) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(y, 0), x, y) cond2(true, x, y) -> cond2(gr(y, 0), p(x), p(y)) cond2(false, x, y) -> cond1(and(eq(x, y), gr(x, 0)), x, y) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) p(0) -> 0 p(s(x)) -> x eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(x)) -> false eq(s(x), s(y)) -> eq(x, y) and(true, true) -> true and(false, x) -> false and(x, false) -> false S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (51) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence gr(s(x), s(y)) ->^+ gr(x, y) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x / s(x), y / s(y)]. The result substitution is [ ]. ---------------------------------------- (52) Complex Obligation (BEST) ---------------------------------------- (53) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(y, 0), x, y) cond2(true, x, y) -> cond2(gr(y, 0), p(x), p(y)) cond2(false, x, y) -> cond1(and(eq(x, y), gr(x, 0)), x, y) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) p(0) -> 0 p(s(x)) -> x eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(x)) -> false eq(s(x), s(y)) -> eq(x, y) and(true, true) -> true and(false, x) -> false and(x, false) -> false S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (54) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (55) BOUNDS(n^1, INF) ---------------------------------------- (56) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(y, 0), x, y) cond2(true, x, y) -> cond2(gr(y, 0), p(x), p(y)) cond2(false, x, y) -> cond1(and(eq(x, y), gr(x, 0)), x, y) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) p(0) -> 0 p(s(x)) -> x eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(x)) -> false eq(s(x), s(y)) -> eq(x, y) and(true, true) -> true and(false, x) -> false and(x, false) -> false S is empty. Rewrite Strategy: INNERMOST