/export/starexec/sandbox/solver/bin/starexec_run_tct_rci /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1),O(n^1)) * Step 1: Sum. WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__f(X)) -> f(X) activate(n__g(X)) -> g(activate(X)) f(X) -> n__f(X) f(n__f(n__a())) -> f(n__g(n__f(n__a()))) g(X) -> n__g(X) - Signature: {a/0,activate/1,f/1,g/1} / {n__a/0,n__f/1,n__g/1} - Obligation: innermost runtime complexity wrt. defined symbols {a,activate,f,g} and constructors {n__a,n__f,n__g} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: Sum. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__f(X)) -> f(X) activate(n__g(X)) -> g(activate(X)) f(X) -> n__f(X) f(n__f(n__a())) -> f(n__g(n__f(n__a()))) g(X) -> n__g(X) - Signature: {a/0,activate/1,f/1,g/1} / {n__a/0,n__f/1,n__g/1} - Obligation: innermost runtime complexity wrt. defined symbols {a,activate,f,g} and constructors {n__a,n__f,n__g} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:2: DecreasingLoops. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__f(X)) -> f(X) activate(n__g(X)) -> g(activate(X)) f(X) -> n__f(X) f(n__f(n__a())) -> f(n__g(n__f(n__a()))) g(X) -> n__g(X) - Signature: {a/0,activate/1,f/1,g/1} / {n__a/0,n__f/1,n__g/1} - Obligation: innermost runtime complexity wrt. defined symbols {a,activate,f,g} and constructors {n__a,n__f,n__g} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: activate(x){x -> n__g(x)} = activate(n__g(x)) ->^+ g(activate(x)) = C[activate(x) = activate(x){}] ** Step 1.b:1: DependencyPairs. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__f(X)) -> f(X) activate(n__g(X)) -> g(activate(X)) f(X) -> n__f(X) f(n__f(n__a())) -> f(n__g(n__f(n__a()))) g(X) -> n__g(X) - Signature: {a/0,activate/1,f/1,g/1} / {n__a/0,n__f/1,n__g/1} - Obligation: innermost runtime complexity wrt. defined symbols {a,activate,f,g} and constructors {n__a,n__f,n__g} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs a#() -> c_1() activate#(X) -> c_2() activate#(n__a()) -> c_3(a#()) activate#(n__f(X)) -> c_4(f#(X)) activate#(n__g(X)) -> c_5(g#(activate(X)),activate#(X)) f#(X) -> c_6() f#(n__f(n__a())) -> c_7(f#(n__g(n__f(n__a())))) g#(X) -> c_8() Weak DPs and mark the set of starting terms. ** Step 1.b:2: PredecessorEstimation. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: a#() -> c_1() activate#(X) -> c_2() activate#(n__a()) -> c_3(a#()) activate#(n__f(X)) -> c_4(f#(X)) activate#(n__g(X)) -> c_5(g#(activate(X)),activate#(X)) f#(X) -> c_6() f#(n__f(n__a())) -> c_7(f#(n__g(n__f(n__a())))) g#(X) -> c_8() - Weak TRS: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__f(X)) -> f(X) activate(n__g(X)) -> g(activate(X)) f(X) -> n__f(X) f(n__f(n__a())) -> f(n__g(n__f(n__a()))) g(X) -> n__g(X) - Signature: {a/0,activate/1,f/1,g/1,a#/0,activate#/1,f#/1,g#/1} / {n__a/0,n__f/1,n__g/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/2 ,c_6/0,c_7/1,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,activate#,f#,g#} and constructors {n__a,n__f,n__g} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,2,6,8} by application of Pre({1,2,6,8}) = {3,4,5,7}. Here rules are labelled as follows: 1: a#() -> c_1() 2: activate#(X) -> c_2() 3: activate#(n__a()) -> c_3(a#()) 4: activate#(n__f(X)) -> c_4(f#(X)) 5: activate#(n__g(X)) -> c_5(g#(activate(X)),activate#(X)) 6: f#(X) -> c_6() 7: f#(n__f(n__a())) -> c_7(f#(n__g(n__f(n__a())))) 8: g#(X) -> c_8() ** Step 1.b:3: PredecessorEstimation. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(n__a()) -> c_3(a#()) activate#(n__f(X)) -> c_4(f#(X)) activate#(n__g(X)) -> c_5(g#(activate(X)),activate#(X)) f#(n__f(n__a())) -> c_7(f#(n__g(n__f(n__a())))) - Weak DPs: a#() -> c_1() activate#(X) -> c_2() f#(X) -> c_6() g#(X) -> c_8() - Weak TRS: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__f(X)) -> f(X) activate(n__g(X)) -> g(activate(X)) f(X) -> n__f(X) f(n__f(n__a())) -> f(n__g(n__f(n__a()))) g(X) -> n__g(X) - Signature: {a/0,activate/1,f/1,g/1,a#/0,activate#/1,f#/1,g#/1} / {n__a/0,n__f/1,n__g/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/2 ,c_6/0,c_7/1,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,activate#,f#,g#} and constructors {n__a,n__f,n__g} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,4} by application of Pre({1,4}) = {2,3}. Here rules are labelled as follows: 1: activate#(n__a()) -> c_3(a#()) 2: activate#(n__f(X)) -> c_4(f#(X)) 3: activate#(n__g(X)) -> c_5(g#(activate(X)),activate#(X)) 4: f#(n__f(n__a())) -> c_7(f#(n__g(n__f(n__a())))) 5: a#() -> c_1() 6: activate#(X) -> c_2() 7: f#(X) -> c_6() 8: g#(X) -> c_8() ** Step 1.b:4: PredecessorEstimation. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(n__f(X)) -> c_4(f#(X)) activate#(n__g(X)) -> c_5(g#(activate(X)),activate#(X)) - Weak DPs: a#() -> c_1() activate#(X) -> c_2() activate#(n__a()) -> c_3(a#()) f#(X) -> c_6() f#(n__f(n__a())) -> c_7(f#(n__g(n__f(n__a())))) g#(X) -> c_8() - Weak TRS: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__f(X)) -> f(X) activate(n__g(X)) -> g(activate(X)) f(X) -> n__f(X) f(n__f(n__a())) -> f(n__g(n__f(n__a()))) g(X) -> n__g(X) - Signature: {a/0,activate/1,f/1,g/1,a#/0,activate#/1,f#/1,g#/1} / {n__a/0,n__f/1,n__g/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/2 ,c_6/0,c_7/1,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,activate#,f#,g#} and constructors {n__a,n__f,n__g} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1} by application of Pre({1}) = {2}. Here rules are labelled as follows: 1: activate#(n__f(X)) -> c_4(f#(X)) 2: activate#(n__g(X)) -> c_5(g#(activate(X)),activate#(X)) 3: a#() -> c_1() 4: activate#(X) -> c_2() 5: activate#(n__a()) -> c_3(a#()) 6: f#(X) -> c_6() 7: f#(n__f(n__a())) -> c_7(f#(n__g(n__f(n__a())))) 8: g#(X) -> c_8() ** Step 1.b:5: RemoveWeakSuffixes. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(n__g(X)) -> c_5(g#(activate(X)),activate#(X)) - Weak DPs: a#() -> c_1() activate#(X) -> c_2() activate#(n__a()) -> c_3(a#()) activate#(n__f(X)) -> c_4(f#(X)) f#(X) -> c_6() f#(n__f(n__a())) -> c_7(f#(n__g(n__f(n__a())))) g#(X) -> c_8() - Weak TRS: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__f(X)) -> f(X) activate(n__g(X)) -> g(activate(X)) f(X) -> n__f(X) f(n__f(n__a())) -> f(n__g(n__f(n__a()))) g(X) -> n__g(X) - Signature: {a/0,activate/1,f/1,g/1,a#/0,activate#/1,f#/1,g#/1} / {n__a/0,n__f/1,n__g/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/2 ,c_6/0,c_7/1,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,activate#,f#,g#} and constructors {n__a,n__f,n__g} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:activate#(n__g(X)) -> c_5(g#(activate(X)),activate#(X)) -->_2 activate#(n__f(X)) -> c_4(f#(X)):5 -->_2 activate#(n__a()) -> c_3(a#()):4 -->_1 g#(X) -> c_8():8 -->_2 activate#(X) -> c_2():3 -->_2 activate#(n__g(X)) -> c_5(g#(activate(X)),activate#(X)):1 2:W:a#() -> c_1() 3:W:activate#(X) -> c_2() 4:W:activate#(n__a()) -> c_3(a#()) -->_1 a#() -> c_1():2 5:W:activate#(n__f(X)) -> c_4(f#(X)) -->_1 f#(n__f(n__a())) -> c_7(f#(n__g(n__f(n__a())))):7 -->_1 f#(X) -> c_6():6 6:W:f#(X) -> c_6() 7:W:f#(n__f(n__a())) -> c_7(f#(n__g(n__f(n__a())))) -->_1 f#(X) -> c_6():6 8:W:g#(X) -> c_8() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: activate#(X) -> c_2() 8: g#(X) -> c_8() 4: activate#(n__a()) -> c_3(a#()) 2: a#() -> c_1() 5: activate#(n__f(X)) -> c_4(f#(X)) 7: f#(n__f(n__a())) -> c_7(f#(n__g(n__f(n__a())))) 6: f#(X) -> c_6() ** Step 1.b:6: SimplifyRHS. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(n__g(X)) -> c_5(g#(activate(X)),activate#(X)) - Weak TRS: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__f(X)) -> f(X) activate(n__g(X)) -> g(activate(X)) f(X) -> n__f(X) f(n__f(n__a())) -> f(n__g(n__f(n__a()))) g(X) -> n__g(X) - Signature: {a/0,activate/1,f/1,g/1,a#/0,activate#/1,f#/1,g#/1} / {n__a/0,n__f/1,n__g/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/2 ,c_6/0,c_7/1,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,activate#,f#,g#} and constructors {n__a,n__f,n__g} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:activate#(n__g(X)) -> c_5(g#(activate(X)),activate#(X)) -->_2 activate#(n__g(X)) -> c_5(g#(activate(X)),activate#(X)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: activate#(n__g(X)) -> c_5(activate#(X)) ** Step 1.b:7: UsableRules. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(n__g(X)) -> c_5(activate#(X)) - Weak TRS: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__f(X)) -> f(X) activate(n__g(X)) -> g(activate(X)) f(X) -> n__f(X) f(n__f(n__a())) -> f(n__g(n__f(n__a()))) g(X) -> n__g(X) - Signature: {a/0,activate/1,f/1,g/1,a#/0,activate#/1,f#/1,g#/1} / {n__a/0,n__f/1,n__g/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1 ,c_6/0,c_7/1,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,activate#,f#,g#} and constructors {n__a,n__f,n__g} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: activate#(n__g(X)) -> c_5(activate#(X)) ** Step 1.b:8: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(n__g(X)) -> c_5(activate#(X)) - Signature: {a/0,activate/1,f/1,g/1,a#/0,activate#/1,f#/1,g#/1} / {n__a/0,n__f/1,n__g/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1 ,c_6/0,c_7/1,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,activate#,f#,g#} and constructors {n__a,n__f,n__g} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_5) = {1} Following symbols are considered usable: {a#,activate#,f#,g#} TcT has computed the following interpretation: p(a) = [0] p(activate) = [0] p(f) = [1] x1 + [2] p(g) = [1] x1 + [0] p(n__a) = [0] p(n__f) = [0] p(n__g) = [1] x1 + [2] p(a#) = [2] p(activate#) = [8] x1 + [0] p(f#) = [1] x1 + [1] p(g#) = [2] p(c_1) = [1] p(c_2) = [0] p(c_3) = [1] p(c_4) = [0] p(c_5) = [1] x1 + [12] p(c_6) = [1] p(c_7) = [8] x1 + [2] p(c_8) = [1] Following rules are strictly oriented: activate#(n__g(X)) = [8] X + [16] > [8] X + [12] = c_5(activate#(X)) Following rules are (at-least) weakly oriented: ** Step 1.b:9: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: activate#(n__g(X)) -> c_5(activate#(X)) - Signature: {a/0,activate/1,f/1,g/1,a#/0,activate#/1,f#/1,g#/1} / {n__a/0,n__f/1,n__g/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1 ,c_6/0,c_7/1,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,activate#,f#,g#} and constructors {n__a,n__f,n__g} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))