/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 25 ms] (10) CdtProblem (11) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (12) BOUNDS(1, 1) (13) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (14) TRS for Loop Detection (15) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (16) BEST (17) proven lower bound (18) LowerBoundPropagationProof [FINISHED, 0 ms] (19) BOUNDS(n^1, INF) (20) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: a__f(b, X, c) -> a__f(X, a__c, X) a__c -> b mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) mark(c) -> a__c mark(b) -> b a__f(X1, X2, X3) -> f(X1, X2, X3) a__c -> c S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: a__f(b, z0, c) -> a__f(z0, a__c, z0) a__f(z0, z1, z2) -> f(z0, z1, z2) a__c -> b a__c -> c mark(f(z0, z1, z2)) -> a__f(z0, mark(z1), z2) mark(c) -> a__c mark(b) -> b Tuples: A__F(b, z0, c) -> c1(A__F(z0, a__c, z0), A__C) A__F(z0, z1, z2) -> c2 A__C -> c3 A__C -> c4 MARK(f(z0, z1, z2)) -> c5(A__F(z0, mark(z1), z2), MARK(z1)) MARK(c) -> c6(A__C) MARK(b) -> c7 S tuples: A__F(b, z0, c) -> c1(A__F(z0, a__c, z0), A__C) A__F(z0, z1, z2) -> c2 A__C -> c3 A__C -> c4 MARK(f(z0, z1, z2)) -> c5(A__F(z0, mark(z1), z2), MARK(z1)) MARK(c) -> c6(A__C) MARK(b) -> c7 K tuples:none Defined Rule Symbols: a__f_3, a__c, mark_1 Defined Pair Symbols: A__F_3, A__C, MARK_1 Compound Symbols: c1_2, c2, c3, c4, c5_2, c6_1, c7 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 6 trailing nodes: A__C -> c3 A__F(b, z0, c) -> c1(A__F(z0, a__c, z0), A__C) MARK(c) -> c6(A__C) A__C -> c4 A__F(z0, z1, z2) -> c2 MARK(b) -> c7 ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: a__f(b, z0, c) -> a__f(z0, a__c, z0) a__f(z0, z1, z2) -> f(z0, z1, z2) a__c -> b a__c -> c mark(f(z0, z1, z2)) -> a__f(z0, mark(z1), z2) mark(c) -> a__c mark(b) -> b Tuples: MARK(f(z0, z1, z2)) -> c5(A__F(z0, mark(z1), z2), MARK(z1)) S tuples: MARK(f(z0, z1, z2)) -> c5(A__F(z0, mark(z1), z2), MARK(z1)) K tuples:none Defined Rule Symbols: a__f_3, a__c, mark_1 Defined Pair Symbols: MARK_1 Compound Symbols: c5_2 ---------------------------------------- (5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: a__f(b, z0, c) -> a__f(z0, a__c, z0) a__f(z0, z1, z2) -> f(z0, z1, z2) a__c -> b a__c -> c mark(f(z0, z1, z2)) -> a__f(z0, mark(z1), z2) mark(c) -> a__c mark(b) -> b Tuples: MARK(f(z0, z1, z2)) -> c5(MARK(z1)) S tuples: MARK(f(z0, z1, z2)) -> c5(MARK(z1)) K tuples:none Defined Rule Symbols: a__f_3, a__c, mark_1 Defined Pair Symbols: MARK_1 Compound Symbols: c5_1 ---------------------------------------- (7) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: a__f(b, z0, c) -> a__f(z0, a__c, z0) a__f(z0, z1, z2) -> f(z0, z1, z2) a__c -> b a__c -> c mark(f(z0, z1, z2)) -> a__f(z0, mark(z1), z2) mark(c) -> a__c mark(b) -> b ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: MARK(f(z0, z1, z2)) -> c5(MARK(z1)) S tuples: MARK(f(z0, z1, z2)) -> c5(MARK(z1)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: MARK_1 Compound Symbols: c5_1 ---------------------------------------- (9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. MARK(f(z0, z1, z2)) -> c5(MARK(z1)) We considered the (Usable) Rules:none And the Tuples: MARK(f(z0, z1, z2)) -> c5(MARK(z1)) The order we found is given by the following interpretation: Polynomial interpretation : POL(MARK(x_1)) = x_1 POL(c5(x_1)) = x_1 POL(f(x_1, x_2, x_3)) = [1] + x_2 ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: MARK(f(z0, z1, z2)) -> c5(MARK(z1)) S tuples:none K tuples: MARK(f(z0, z1, z2)) -> c5(MARK(z1)) Defined Rule Symbols:none Defined Pair Symbols: MARK_1 Compound Symbols: c5_1 ---------------------------------------- (11) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (12) BOUNDS(1, 1) ---------------------------------------- (13) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (14) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: a__f(b, X, c) -> a__f(X, a__c, X) a__c -> b mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) mark(c) -> a__c mark(b) -> b a__f(X1, X2, X3) -> f(X1, X2, X3) a__c -> c S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (15) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence mark(f(X1, X2, X3)) ->^+ a__f(X1, mark(X2), X3) gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. The pumping substitution is [X2 / f(X1, X2, X3)]. The result substitution is [ ]. ---------------------------------------- (16) Complex Obligation (BEST) ---------------------------------------- (17) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: a__f(b, X, c) -> a__f(X, a__c, X) a__c -> b mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) mark(c) -> a__c mark(b) -> b a__f(X1, X2, X3) -> f(X1, X2, X3) a__c -> c S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (18) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (19) BOUNDS(n^1, INF) ---------------------------------------- (20) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: a__f(b, X, c) -> a__f(X, a__c, X) a__c -> b mark(f(X1, X2, X3)) -> a__f(X1, mark(X2), X3) mark(c) -> a__c mark(b) -> b a__f(X1, X2, X3) -> f(X1, X2, X3) a__c -> c S is empty. Rewrite Strategy: INNERMOST