/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) SlicingProof [LOWER BOUND(ID), 0 ms] (4) CpxTRS (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) typed CpxTrs (7) OrderProof [LOWER BOUND(ID), 0 ms] (8) typed CpxTrs (9) RewriteLemmaProof [LOWER BOUND(ID), 560 ms] (10) BEST (11) proven lower bound (12) LowerBoundPropagationProof [FINISHED, 0 ms] (13) BOUNDS(n^1, INF) (14) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__terms(N) -> cons(recip(a__sqr(mark(N))), terms(s(N))) a__sqr(0) -> 0 a__sqr(s(X)) -> s(add(sqr(X), dbl(X))) a__dbl(0) -> 0 a__dbl(s(X)) -> s(s(dbl(X))) a__add(0, X) -> mark(X) a__add(s(X), Y) -> s(add(X, Y)) a__first(0, X) -> nil a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z)) mark(terms(X)) -> a__terms(mark(X)) mark(sqr(X)) -> a__sqr(mark(X)) mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) mark(dbl(X)) -> a__dbl(mark(X)) mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(recip(X)) -> recip(mark(X)) mark(s(X)) -> s(X) mark(0) -> 0 mark(nil) -> nil a__terms(X) -> terms(X) a__sqr(X) -> sqr(X) a__add(X1, X2) -> add(X1, X2) a__dbl(X) -> dbl(X) a__first(X1, X2) -> first(X1, X2) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__terms(N) -> cons(recip(a__sqr(mark(N))), terms(s(N))) a__sqr(0') -> 0' a__sqr(s(X)) -> s(add(sqr(X), dbl(X))) a__dbl(0') -> 0' a__dbl(s(X)) -> s(s(dbl(X))) a__add(0', X) -> mark(X) a__add(s(X), Y) -> s(add(X, Y)) a__first(0', X) -> nil a__first(s(X), cons(Y, Z)) -> cons(mark(Y), first(X, Z)) mark(terms(X)) -> a__terms(mark(X)) mark(sqr(X)) -> a__sqr(mark(X)) mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) mark(dbl(X)) -> a__dbl(mark(X)) mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(recip(X)) -> recip(mark(X)) mark(s(X)) -> s(X) mark(0') -> 0' mark(nil) -> nil a__terms(X) -> terms(X) a__sqr(X) -> sqr(X) a__add(X1, X2) -> add(X1, X2) a__dbl(X) -> dbl(X) a__first(X1, X2) -> first(X1, X2) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: cons/1 s/0 ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__terms(N) -> cons(recip(a__sqr(mark(N)))) a__sqr(0') -> 0' a__sqr(s) -> s a__dbl(0') -> 0' a__dbl(s) -> s a__add(0', X) -> mark(X) a__add(s, Y) -> s a__first(0', X) -> nil a__first(s, cons(Y)) -> cons(mark(Y)) mark(terms(X)) -> a__terms(mark(X)) mark(sqr(X)) -> a__sqr(mark(X)) mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) mark(dbl(X)) -> a__dbl(mark(X)) mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) mark(cons(X1)) -> cons(mark(X1)) mark(recip(X)) -> recip(mark(X)) mark(s) -> s mark(0') -> 0' mark(nil) -> nil a__terms(X) -> terms(X) a__sqr(X) -> sqr(X) a__add(X1, X2) -> add(X1, X2) a__dbl(X) -> dbl(X) a__first(X1, X2) -> first(X1, X2) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Innermost TRS: Rules: a__terms(N) -> cons(recip(a__sqr(mark(N)))) a__sqr(0') -> 0' a__sqr(s) -> s a__dbl(0') -> 0' a__dbl(s) -> s a__add(0', X) -> mark(X) a__add(s, Y) -> s a__first(0', X) -> nil a__first(s, cons(Y)) -> cons(mark(Y)) mark(terms(X)) -> a__terms(mark(X)) mark(sqr(X)) -> a__sqr(mark(X)) mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) mark(dbl(X)) -> a__dbl(mark(X)) mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) mark(cons(X1)) -> cons(mark(X1)) mark(recip(X)) -> recip(mark(X)) mark(s) -> s mark(0') -> 0' mark(nil) -> nil a__terms(X) -> terms(X) a__sqr(X) -> sqr(X) a__add(X1, X2) -> add(X1, X2) a__dbl(X) -> dbl(X) a__first(X1, X2) -> first(X1, X2) Types: a__terms :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first cons :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first recip :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first a__sqr :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first mark :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first 0' :: recip:cons:0':s:nil:terms:sqr:add:dbl:first s :: recip:cons:0':s:nil:terms:sqr:add:dbl:first a__dbl :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first a__add :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first a__first :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first nil :: recip:cons:0':s:nil:terms:sqr:add:dbl:first terms :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first sqr :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first add :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first dbl :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first first :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first hole_recip:cons:0':s:nil:terms:sqr:add:dbl:first1_0 :: recip:cons:0':s:nil:terms:sqr:add:dbl:first gen_recip:cons:0':s:nil:terms:sqr:add:dbl:first2_0 :: Nat -> recip:cons:0':s:nil:terms:sqr:add:dbl:first ---------------------------------------- (7) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: a__terms, mark They will be analysed ascendingly in the following order: a__terms = mark ---------------------------------------- (8) Obligation: Innermost TRS: Rules: a__terms(N) -> cons(recip(a__sqr(mark(N)))) a__sqr(0') -> 0' a__sqr(s) -> s a__dbl(0') -> 0' a__dbl(s) -> s a__add(0', X) -> mark(X) a__add(s, Y) -> s a__first(0', X) -> nil a__first(s, cons(Y)) -> cons(mark(Y)) mark(terms(X)) -> a__terms(mark(X)) mark(sqr(X)) -> a__sqr(mark(X)) mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) mark(dbl(X)) -> a__dbl(mark(X)) mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) mark(cons(X1)) -> cons(mark(X1)) mark(recip(X)) -> recip(mark(X)) mark(s) -> s mark(0') -> 0' mark(nil) -> nil a__terms(X) -> terms(X) a__sqr(X) -> sqr(X) a__add(X1, X2) -> add(X1, X2) a__dbl(X) -> dbl(X) a__first(X1, X2) -> first(X1, X2) Types: a__terms :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first cons :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first recip :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first a__sqr :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first mark :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first 0' :: recip:cons:0':s:nil:terms:sqr:add:dbl:first s :: recip:cons:0':s:nil:terms:sqr:add:dbl:first a__dbl :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first a__add :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first a__first :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first nil :: recip:cons:0':s:nil:terms:sqr:add:dbl:first terms :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first sqr :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first add :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first dbl :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first first :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first hole_recip:cons:0':s:nil:terms:sqr:add:dbl:first1_0 :: recip:cons:0':s:nil:terms:sqr:add:dbl:first gen_recip:cons:0':s:nil:terms:sqr:add:dbl:first2_0 :: Nat -> recip:cons:0':s:nil:terms:sqr:add:dbl:first Generator Equations: gen_recip:cons:0':s:nil:terms:sqr:add:dbl:first2_0(0) <=> 0' gen_recip:cons:0':s:nil:terms:sqr:add:dbl:first2_0(+(x, 1)) <=> cons(gen_recip:cons:0':s:nil:terms:sqr:add:dbl:first2_0(x)) The following defined symbols remain to be analysed: mark, a__terms They will be analysed ascendingly in the following order: a__terms = mark ---------------------------------------- (9) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: mark(gen_recip:cons:0':s:nil:terms:sqr:add:dbl:first2_0(n4_0)) -> gen_recip:cons:0':s:nil:terms:sqr:add:dbl:first2_0(n4_0), rt in Omega(1 + n4_0) Induction Base: mark(gen_recip:cons:0':s:nil:terms:sqr:add:dbl:first2_0(0)) ->_R^Omega(1) 0' Induction Step: mark(gen_recip:cons:0':s:nil:terms:sqr:add:dbl:first2_0(+(n4_0, 1))) ->_R^Omega(1) cons(mark(gen_recip:cons:0':s:nil:terms:sqr:add:dbl:first2_0(n4_0))) ->_IH cons(gen_recip:cons:0':s:nil:terms:sqr:add:dbl:first2_0(c5_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (10) Complex Obligation (BEST) ---------------------------------------- (11) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: a__terms(N) -> cons(recip(a__sqr(mark(N)))) a__sqr(0') -> 0' a__sqr(s) -> s a__dbl(0') -> 0' a__dbl(s) -> s a__add(0', X) -> mark(X) a__add(s, Y) -> s a__first(0', X) -> nil a__first(s, cons(Y)) -> cons(mark(Y)) mark(terms(X)) -> a__terms(mark(X)) mark(sqr(X)) -> a__sqr(mark(X)) mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) mark(dbl(X)) -> a__dbl(mark(X)) mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) mark(cons(X1)) -> cons(mark(X1)) mark(recip(X)) -> recip(mark(X)) mark(s) -> s mark(0') -> 0' mark(nil) -> nil a__terms(X) -> terms(X) a__sqr(X) -> sqr(X) a__add(X1, X2) -> add(X1, X2) a__dbl(X) -> dbl(X) a__first(X1, X2) -> first(X1, X2) Types: a__terms :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first cons :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first recip :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first a__sqr :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first mark :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first 0' :: recip:cons:0':s:nil:terms:sqr:add:dbl:first s :: recip:cons:0':s:nil:terms:sqr:add:dbl:first a__dbl :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first a__add :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first a__first :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first nil :: recip:cons:0':s:nil:terms:sqr:add:dbl:first terms :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first sqr :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first add :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first dbl :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first first :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first hole_recip:cons:0':s:nil:terms:sqr:add:dbl:first1_0 :: recip:cons:0':s:nil:terms:sqr:add:dbl:first gen_recip:cons:0':s:nil:terms:sqr:add:dbl:first2_0 :: Nat -> recip:cons:0':s:nil:terms:sqr:add:dbl:first Generator Equations: gen_recip:cons:0':s:nil:terms:sqr:add:dbl:first2_0(0) <=> 0' gen_recip:cons:0':s:nil:terms:sqr:add:dbl:first2_0(+(x, 1)) <=> cons(gen_recip:cons:0':s:nil:terms:sqr:add:dbl:first2_0(x)) The following defined symbols remain to be analysed: mark, a__terms They will be analysed ascendingly in the following order: a__terms = mark ---------------------------------------- (12) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (13) BOUNDS(n^1, INF) ---------------------------------------- (14) Obligation: Innermost TRS: Rules: a__terms(N) -> cons(recip(a__sqr(mark(N)))) a__sqr(0') -> 0' a__sqr(s) -> s a__dbl(0') -> 0' a__dbl(s) -> s a__add(0', X) -> mark(X) a__add(s, Y) -> s a__first(0', X) -> nil a__first(s, cons(Y)) -> cons(mark(Y)) mark(terms(X)) -> a__terms(mark(X)) mark(sqr(X)) -> a__sqr(mark(X)) mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) mark(dbl(X)) -> a__dbl(mark(X)) mark(first(X1, X2)) -> a__first(mark(X1), mark(X2)) mark(cons(X1)) -> cons(mark(X1)) mark(recip(X)) -> recip(mark(X)) mark(s) -> s mark(0') -> 0' mark(nil) -> nil a__terms(X) -> terms(X) a__sqr(X) -> sqr(X) a__add(X1, X2) -> add(X1, X2) a__dbl(X) -> dbl(X) a__first(X1, X2) -> first(X1, X2) Types: a__terms :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first cons :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first recip :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first a__sqr :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first mark :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first 0' :: recip:cons:0':s:nil:terms:sqr:add:dbl:first s :: recip:cons:0':s:nil:terms:sqr:add:dbl:first a__dbl :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first a__add :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first a__first :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first nil :: recip:cons:0':s:nil:terms:sqr:add:dbl:first terms :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first sqr :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first add :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first dbl :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first first :: recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first -> recip:cons:0':s:nil:terms:sqr:add:dbl:first hole_recip:cons:0':s:nil:terms:sqr:add:dbl:first1_0 :: recip:cons:0':s:nil:terms:sqr:add:dbl:first gen_recip:cons:0':s:nil:terms:sqr:add:dbl:first2_0 :: Nat -> recip:cons:0':s:nil:terms:sqr:add:dbl:first Lemmas: mark(gen_recip:cons:0':s:nil:terms:sqr:add:dbl:first2_0(n4_0)) -> gen_recip:cons:0':s:nil:terms:sqr:add:dbl:first2_0(n4_0), rt in Omega(1 + n4_0) Generator Equations: gen_recip:cons:0':s:nil:terms:sqr:add:dbl:first2_0(0) <=> 0' gen_recip:cons:0':s:nil:terms:sqr:add:dbl:first2_0(+(x, 1)) <=> cons(gen_recip:cons:0':s:nil:terms:sqr:add:dbl:first2_0(x)) The following defined symbols remain to be analysed: a__terms They will be analysed ascendingly in the following order: a__terms = mark