/export/starexec/sandbox/solver/bin/starexec_run_tct_rci /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1),O(n^1)) * Step 1: Sum. WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: a__f(X) -> f(X) a__f(f(a())) -> c(f(g(f(a())))) mark(a()) -> a() mark(c(X)) -> c(X) mark(f(X)) -> a__f(mark(X)) mark(g(X)) -> g(mark(X)) - Signature: {a__f/1,mark/1} / {a/0,c/1,f/1,g/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__f,mark} and constructors {a,c,f,g} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: Sum. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: a__f(X) -> f(X) a__f(f(a())) -> c(f(g(f(a())))) mark(a()) -> a() mark(c(X)) -> c(X) mark(f(X)) -> a__f(mark(X)) mark(g(X)) -> g(mark(X)) - Signature: {a__f/1,mark/1} / {a/0,c/1,f/1,g/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__f,mark} and constructors {a,c,f,g} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:2: DecreasingLoops. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: a__f(X) -> f(X) a__f(f(a())) -> c(f(g(f(a())))) mark(a()) -> a() mark(c(X)) -> c(X) mark(f(X)) -> a__f(mark(X)) mark(g(X)) -> g(mark(X)) - Signature: {a__f/1,mark/1} / {a/0,c/1,f/1,g/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__f,mark} and constructors {a,c,f,g} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: mark(x){x -> f(x)} = mark(f(x)) ->^+ a__f(mark(x)) = C[mark(x) = mark(x){}] ** Step 1.b:1: DependencyPairs. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: a__f(X) -> f(X) a__f(f(a())) -> c(f(g(f(a())))) mark(a()) -> a() mark(c(X)) -> c(X) mark(f(X)) -> a__f(mark(X)) mark(g(X)) -> g(mark(X)) - Signature: {a__f/1,mark/1} / {a/0,c/1,f/1,g/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__f,mark} and constructors {a,c,f,g} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs a__f#(X) -> c_1() a__f#(f(a())) -> c_2() mark#(a()) -> c_3() mark#(c(X)) -> c_4() mark#(f(X)) -> c_5(a__f#(mark(X)),mark#(X)) mark#(g(X)) -> c_6(mark#(X)) Weak DPs and mark the set of starting terms. ** Step 1.b:2: PredecessorEstimation. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: a__f#(X) -> c_1() a__f#(f(a())) -> c_2() mark#(a()) -> c_3() mark#(c(X)) -> c_4() mark#(f(X)) -> c_5(a__f#(mark(X)),mark#(X)) mark#(g(X)) -> c_6(mark#(X)) - Weak TRS: a__f(X) -> f(X) a__f(f(a())) -> c(f(g(f(a())))) mark(a()) -> a() mark(c(X)) -> c(X) mark(f(X)) -> a__f(mark(X)) mark(g(X)) -> g(mark(X)) - Signature: {a__f/1,mark/1,a__f#/1,mark#/1} / {a/0,c/1,f/1,g/1,c_1/0,c_2/0,c_3/0,c_4/0,c_5/2,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__f#,mark#} and constructors {a,c,f,g} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,2,3,4} by application of Pre({1,2,3,4}) = {5,6}. Here rules are labelled as follows: 1: a__f#(X) -> c_1() 2: a__f#(f(a())) -> c_2() 3: mark#(a()) -> c_3() 4: mark#(c(X)) -> c_4() 5: mark#(f(X)) -> c_5(a__f#(mark(X)),mark#(X)) 6: mark#(g(X)) -> c_6(mark#(X)) ** Step 1.b:3: RemoveWeakSuffixes. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: mark#(f(X)) -> c_5(a__f#(mark(X)),mark#(X)) mark#(g(X)) -> c_6(mark#(X)) - Weak DPs: a__f#(X) -> c_1() a__f#(f(a())) -> c_2() mark#(a()) -> c_3() mark#(c(X)) -> c_4() - Weak TRS: a__f(X) -> f(X) a__f(f(a())) -> c(f(g(f(a())))) mark(a()) -> a() mark(c(X)) -> c(X) mark(f(X)) -> a__f(mark(X)) mark(g(X)) -> g(mark(X)) - Signature: {a__f/1,mark/1,a__f#/1,mark#/1} / {a/0,c/1,f/1,g/1,c_1/0,c_2/0,c_3/0,c_4/0,c_5/2,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__f#,mark#} and constructors {a,c,f,g} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:mark#(f(X)) -> c_5(a__f#(mark(X)),mark#(X)) -->_2 mark#(g(X)) -> c_6(mark#(X)):2 -->_2 mark#(c(X)) -> c_4():6 -->_2 mark#(a()) -> c_3():5 -->_1 a__f#(f(a())) -> c_2():4 -->_1 a__f#(X) -> c_1():3 -->_2 mark#(f(X)) -> c_5(a__f#(mark(X)),mark#(X)):1 2:S:mark#(g(X)) -> c_6(mark#(X)) -->_1 mark#(c(X)) -> c_4():6 -->_1 mark#(a()) -> c_3():5 -->_1 mark#(g(X)) -> c_6(mark#(X)):2 -->_1 mark#(f(X)) -> c_5(a__f#(mark(X)),mark#(X)):1 3:W:a__f#(X) -> c_1() 4:W:a__f#(f(a())) -> c_2() 5:W:mark#(a()) -> c_3() 6:W:mark#(c(X)) -> c_4() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: a__f#(X) -> c_1() 4: a__f#(f(a())) -> c_2() 5: mark#(a()) -> c_3() 6: mark#(c(X)) -> c_4() ** Step 1.b:4: SimplifyRHS. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: mark#(f(X)) -> c_5(a__f#(mark(X)),mark#(X)) mark#(g(X)) -> c_6(mark#(X)) - Weak TRS: a__f(X) -> f(X) a__f(f(a())) -> c(f(g(f(a())))) mark(a()) -> a() mark(c(X)) -> c(X) mark(f(X)) -> a__f(mark(X)) mark(g(X)) -> g(mark(X)) - Signature: {a__f/1,mark/1,a__f#/1,mark#/1} / {a/0,c/1,f/1,g/1,c_1/0,c_2/0,c_3/0,c_4/0,c_5/2,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__f#,mark#} and constructors {a,c,f,g} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:mark#(f(X)) -> c_5(a__f#(mark(X)),mark#(X)) -->_2 mark#(g(X)) -> c_6(mark#(X)):2 -->_2 mark#(f(X)) -> c_5(a__f#(mark(X)),mark#(X)):1 2:S:mark#(g(X)) -> c_6(mark#(X)) -->_1 mark#(g(X)) -> c_6(mark#(X)):2 -->_1 mark#(f(X)) -> c_5(a__f#(mark(X)),mark#(X)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: mark#(f(X)) -> c_5(mark#(X)) ** Step 1.b:5: UsableRules. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: mark#(f(X)) -> c_5(mark#(X)) mark#(g(X)) -> c_6(mark#(X)) - Weak TRS: a__f(X) -> f(X) a__f(f(a())) -> c(f(g(f(a())))) mark(a()) -> a() mark(c(X)) -> c(X) mark(f(X)) -> a__f(mark(X)) mark(g(X)) -> g(mark(X)) - Signature: {a__f/1,mark/1,a__f#/1,mark#/1} / {a/0,c/1,f/1,g/1,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__f#,mark#} and constructors {a,c,f,g} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: mark#(f(X)) -> c_5(mark#(X)) mark#(g(X)) -> c_6(mark#(X)) ** Step 1.b:6: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: mark#(f(X)) -> c_5(mark#(X)) mark#(g(X)) -> c_6(mark#(X)) - Signature: {a__f/1,mark/1,a__f#/1,mark#/1} / {a/0,c/1,f/1,g/1,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__f#,mark#} and constructors {a,c,f,g} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_5) = {1}, uargs(c_6) = {1} Following symbols are considered usable: {a__f#,mark#} TcT has computed the following interpretation: p(a) = [1] p(a__f) = [4] x1 + [0] p(c) = [1] x1 + [1] p(f) = [1] x1 + [4] p(g) = [1] x1 + [4] p(mark) = [1] x1 + [0] p(a__f#) = [1] p(mark#) = [4] x1 + [0] p(c_1) = [0] p(c_2) = [0] p(c_3) = [1] p(c_4) = [0] p(c_5) = [1] x1 + [12] p(c_6) = [1] x1 + [8] Following rules are strictly oriented: mark#(f(X)) = [4] X + [16] > [4] X + [12] = c_5(mark#(X)) mark#(g(X)) = [4] X + [16] > [4] X + [8] = c_6(mark#(X)) Following rules are (at-least) weakly oriented: ** Step 1.b:7: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: mark#(f(X)) -> c_5(mark#(X)) mark#(g(X)) -> c_6(mark#(X)) - Signature: {a__f/1,mark/1,a__f#/1,mark#/1} / {a/0,c/1,f/1,g/1,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__f#,mark#} and constructors {a,c,f,g} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))