/export/starexec/sandbox/solver/bin/starexec_run_tct_rci /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?,O(n^1)) * Step 1: Sum. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) sel(0(),cons(X,Y)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) - Signature: {activate/1,from/1,sel/2} / {0/0,cons/2,n__from/1,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,from,sel} and constructors {0,cons,n__from,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: Sum. MAYBE + Considered Problem: - Strict TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) sel(0(),cons(X,Y)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) - Signature: {activate/1,from/1,sel/2} / {0/0,cons/2,n__from/1,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,from,sel} and constructors {0,cons,n__from,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:2: Ara. MAYBE + Considered Problem: - Strict TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) sel(0(),cons(X,Y)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) - Signature: {activate/1,from/1,sel/2} / {0/0,cons/2,n__from/1,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,from,sel} and constructors {0,cons,n__from,s} + Applied Processor: Ara {minDegree = 1, maxDegree = 3, araTimeout = 15, araRuleShifting = Just 1, isBestCase = True, mkCompletelyDefined = False, verboseOutput = False} + Details: Signatures used: ---------------- F (TrsFun "0") :: [] -(0)-> "A"(1) F (TrsFun "activate") :: ["A"(0)] -(1)-> "A"(0) F (TrsFun "cons") :: ["A"(0) x "A"(0)] -(0)-> "A"(0) F (TrsFun "from") :: ["A"(0)] -(1)-> "A"(0) F (TrsFun "main") :: ["A"(1) x "A"(0)] -(1)-> "A"(0) F (TrsFun "n__from") :: ["A"(0)] -(0)-> "A"(0) F (TrsFun "s") :: ["A"(1)] -(1)-> "A"(1) F (TrsFun "s") :: ["A"(0)] -(0)-> "A"(0) F (TrsFun "sel") :: ["A"(1) x "A"(0)] -(1)-> "A"(0) Cost-free Signatures used: -------------------------- Base Constructor Signatures used: --------------------------------- Following Still Strict Rules were Typed as: ------------------------------------------- 1. Strict: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) sel(0(),cons(X,Y)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) main(x1,x2) -> sel(x1,x2) 2. Weak: ** Step 1.b:1: DependencyPairs. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) sel(0(),cons(X,Y)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) - Signature: {activate/1,from/1,sel/2} / {0/0,cons/2,n__from/1,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,from,sel} and constructors {0,cons,n__from,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs activate#(X) -> c_1() activate#(n__from(X)) -> c_2(from#(X)) from#(X) -> c_3() from#(X) -> c_4() sel#(0(),cons(X,Y)) -> c_5() sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z)),activate#(Z)) Weak DPs and mark the set of starting terms. ** Step 1.b:2: PredecessorEstimation. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(X) -> c_1() activate#(n__from(X)) -> c_2(from#(X)) from#(X) -> c_3() from#(X) -> c_4() sel#(0(),cons(X,Y)) -> c_5() sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z)),activate#(Z)) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) sel(0(),cons(X,Y)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) - Signature: {activate/1,from/1,sel/2,activate#/1,from#/1,sel#/2} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/0,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,from#,sel#} and constructors {0,cons,n__from,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,3,4,5} by application of Pre({1,3,4,5}) = {2,6}. Here rules are labelled as follows: 1: activate#(X) -> c_1() 2: activate#(n__from(X)) -> c_2(from#(X)) 3: from#(X) -> c_3() 4: from#(X) -> c_4() 5: sel#(0(),cons(X,Y)) -> c_5() 6: sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z)),activate#(Z)) ** Step 1.b:3: PredecessorEstimation. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(n__from(X)) -> c_2(from#(X)) sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z)),activate#(Z)) - Weak DPs: activate#(X) -> c_1() from#(X) -> c_3() from#(X) -> c_4() sel#(0(),cons(X,Y)) -> c_5() - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) sel(0(),cons(X,Y)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) - Signature: {activate/1,from/1,sel/2,activate#/1,from#/1,sel#/2} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/0,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,from#,sel#} and constructors {0,cons,n__from,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1} by application of Pre({1}) = {2}. Here rules are labelled as follows: 1: activate#(n__from(X)) -> c_2(from#(X)) 2: sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z)),activate#(Z)) 3: activate#(X) -> c_1() 4: from#(X) -> c_3() 5: from#(X) -> c_4() 6: sel#(0(),cons(X,Y)) -> c_5() ** Step 1.b:4: RemoveWeakSuffixes. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z)),activate#(Z)) - Weak DPs: activate#(X) -> c_1() activate#(n__from(X)) -> c_2(from#(X)) from#(X) -> c_3() from#(X) -> c_4() sel#(0(),cons(X,Y)) -> c_5() - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) sel(0(),cons(X,Y)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) - Signature: {activate/1,from/1,sel/2,activate#/1,from#/1,sel#/2} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/0,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,from#,sel#} and constructors {0,cons,n__from,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z)),activate#(Z)) -->_2 activate#(n__from(X)) -> c_2(from#(X)):3 -->_1 sel#(0(),cons(X,Y)) -> c_5():6 -->_2 activate#(X) -> c_1():2 -->_1 sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z)),activate#(Z)):1 2:W:activate#(X) -> c_1() 3:W:activate#(n__from(X)) -> c_2(from#(X)) -->_1 from#(X) -> c_4():5 -->_1 from#(X) -> c_3():4 4:W:from#(X) -> c_3() 5:W:from#(X) -> c_4() 6:W:sel#(0(),cons(X,Y)) -> c_5() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: activate#(X) -> c_1() 6: sel#(0(),cons(X,Y)) -> c_5() 3: activate#(n__from(X)) -> c_2(from#(X)) 4: from#(X) -> c_3() 5: from#(X) -> c_4() ** Step 1.b:5: SimplifyRHS. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z)),activate#(Z)) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) sel(0(),cons(X,Y)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) - Signature: {activate/1,from/1,sel/2,activate#/1,from#/1,sel#/2} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/0,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,from#,sel#} and constructors {0,cons,n__from,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z)),activate#(Z)) -->_1 sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z)),activate#(Z)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z))) ** Step 1.b:6: UsableRules. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z))) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) sel(0(),cons(X,Y)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) - Signature: {activate/1,from/1,sel/2,activate#/1,from#/1,sel#/2} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,from#,sel#} and constructors {0,cons,n__from,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z))) ** Step 1.b:7: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z))) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,from/1,sel/2,activate#/1,from#/1,sel#/2} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,from#,sel#} and constructors {0,cons,n__from,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_6) = {1} Following symbols are considered usable: {activate#,from#,sel#} TcT has computed the following interpretation: p(0) = [8] p(activate) = [4] p(cons) = [1] x2 + [1] p(from) = [8] p(n__from) = [0] p(s) = [1] x1 + [4] p(sel) = [1] p(activate#) = [1] p(from#) = [4] p(sel#) = [4] x1 + [2] p(c_1) = [0] p(c_2) = [1] p(c_3) = [0] p(c_4) = [0] p(c_5) = [1] p(c_6) = [1] x1 + [4] Following rules are strictly oriented: sel#(s(X),cons(Y,Z)) = [4] X + [18] > [4] X + [6] = c_6(sel#(X,activate(Z))) Following rules are (at-least) weakly oriented: ** Step 1.b:8: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z))) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,from/1,sel/2,activate#/1,from#/1,sel#/2} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,from#,sel#} and constructors {0,cons,n__from,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))