/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, EXP). (0) CpxTRS (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (10) CpxRNTS (11) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxRNTS (13) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) IntTrsBoundProof [UPPER BOUND(ID), 243 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 76 ms] (20) CpxRNTS (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 109 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 53 ms] (26) CpxRNTS (27) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 200 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 65 ms] (32) CpxRNTS (33) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 211 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 95 ms] (38) CpxRNTS (39) FinalProof [FINISHED, 0 ms] (40) BOUNDS(1, EXP) (41) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (42) TRS for Loop Detection (43) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (44) BEST (45) proven lower bound (46) LowerBoundPropagationProof [FINISHED, 0 ms] (47) BOUNDS(n^1, INF) (48) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, EXP). The TRS R consists of the following rules: f(X) -> cons(X, n__f(g(X))) g(0) -> s(0) g(s(X)) -> s(s(g(X))) sel(0, cons(X, Y)) -> X sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) f(X) -> n__f(X) activate(n__f(X)) -> f(X) activate(X) -> X S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, EXP). The TRS R consists of the following rules: f(X) -> cons(X, n__f(g(X))) [1] g(0) -> s(0) [1] g(s(X)) -> s(s(g(X))) [1] sel(0, cons(X, Y)) -> X [1] sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) [1] f(X) -> n__f(X) [1] activate(n__f(X)) -> f(X) [1] activate(X) -> X [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(X) -> cons(X, n__f(g(X))) [1] g(0) -> s(0) [1] g(s(X)) -> s(s(g(X))) [1] sel(0, cons(X, Y)) -> X [1] sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) [1] f(X) -> n__f(X) [1] activate(n__f(X)) -> f(X) [1] activate(X) -> X [1] The TRS has the following type information: f :: 0:s -> n__f:cons cons :: 0:s -> n__f:cons -> n__f:cons n__f :: 0:s -> n__f:cons g :: 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s sel :: 0:s -> n__f:cons -> 0:s activate :: n__f:cons -> n__f:cons Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: sel_2 (c) The following functions are completely defined: activate_1 f_1 g_1 Due to the following rules being added: none And the following fresh constants: const ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(X) -> cons(X, n__f(g(X))) [1] g(0) -> s(0) [1] g(s(X)) -> s(s(g(X))) [1] sel(0, cons(X, Y)) -> X [1] sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) [1] f(X) -> n__f(X) [1] activate(n__f(X)) -> f(X) [1] activate(X) -> X [1] The TRS has the following type information: f :: 0:s -> n__f:cons cons :: 0:s -> n__f:cons -> n__f:cons n__f :: 0:s -> n__f:cons g :: 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s sel :: 0:s -> n__f:cons -> 0:s activate :: n__f:cons -> n__f:cons const :: n__f:cons Rewrite Strategy: INNERMOST ---------------------------------------- (7) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(X) -> cons(X, n__f(g(X))) [1] g(0) -> s(0) [1] g(s(X)) -> s(s(g(X))) [1] sel(0, cons(X, Y)) -> X [1] sel(s(X), cons(Y, n__f(X'))) -> sel(X, f(X')) [2] sel(s(X), cons(Y, Z)) -> sel(X, Z) [2] f(X) -> n__f(X) [1] activate(n__f(X)) -> f(X) [1] activate(X) -> X [1] The TRS has the following type information: f :: 0:s -> n__f:cons cons :: 0:s -> n__f:cons -> n__f:cons n__f :: 0:s -> n__f:cons g :: 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s sel :: 0:s -> n__f:cons -> 0:s activate :: n__f:cons -> n__f:cons const :: n__f:cons Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 const => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> X :|: X >= 0, z = X activate(z) -{ 1 }-> f(X) :|: z = 1 + X, X >= 0 f(z) -{ 1 }-> 1 + X :|: X >= 0, z = X f(z) -{ 1 }-> 1 + X + (1 + g(X)) :|: X >= 0, z = X g(z) -{ 1 }-> 1 + 0 :|: z = 0 g(z) -{ 1 }-> 1 + (1 + g(X)) :|: z = 1 + X, X >= 0 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 sel(z, z') -{ 2 }-> sel(X, Z) :|: Z >= 0, z = 1 + X, Y >= 0, X >= 0, z' = 1 + Y + Z sel(z, z') -{ 2 }-> sel(X, f(X')) :|: z = 1 + X, Y >= 0, z' = 1 + Y + (1 + X'), X >= 0, X' >= 0 ---------------------------------------- (11) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> f(z - 1) :|: z - 1 >= 0 f(z) -{ 1 }-> 1 + z :|: z >= 0 f(z) -{ 1 }-> 1 + z + (1 + g(z)) :|: z >= 0 g(z) -{ 1 }-> 1 + 0 :|: z = 0 g(z) -{ 1 }-> 1 + (1 + g(z - 1)) :|: z - 1 >= 0 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z sel(z, z') -{ 2 }-> sel(z - 1, f(X')) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0 ---------------------------------------- (13) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { g } { f } { activate } { sel } ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> f(z - 1) :|: z - 1 >= 0 f(z) -{ 1 }-> 1 + z :|: z >= 0 f(z) -{ 1 }-> 1 + z + (1 + g(z)) :|: z >= 0 g(z) -{ 1 }-> 1 + 0 :|: z = 0 g(z) -{ 1 }-> 1 + (1 + g(z - 1)) :|: z - 1 >= 0 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z sel(z, z') -{ 2 }-> sel(z - 1, f(X')) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0 Function symbols to be analyzed: {g}, {f}, {activate}, {sel} ---------------------------------------- (15) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> f(z - 1) :|: z - 1 >= 0 f(z) -{ 1 }-> 1 + z :|: z >= 0 f(z) -{ 1 }-> 1 + z + (1 + g(z)) :|: z >= 0 g(z) -{ 1 }-> 1 + 0 :|: z = 0 g(z) -{ 1 }-> 1 + (1 + g(z - 1)) :|: z - 1 >= 0 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z sel(z, z') -{ 2 }-> sel(z - 1, f(X')) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0 Function symbols to be analyzed: {g}, {f}, {activate}, {sel} ---------------------------------------- (17) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + 2*z ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> f(z - 1) :|: z - 1 >= 0 f(z) -{ 1 }-> 1 + z :|: z >= 0 f(z) -{ 1 }-> 1 + z + (1 + g(z)) :|: z >= 0 g(z) -{ 1 }-> 1 + 0 :|: z = 0 g(z) -{ 1 }-> 1 + (1 + g(z - 1)) :|: z - 1 >= 0 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z sel(z, z') -{ 2 }-> sel(z - 1, f(X')) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0 Function symbols to be analyzed: {g}, {f}, {activate}, {sel} Previous analysis results are: g: runtime: ?, size: O(n^1) [1 + 2*z] ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> f(z - 1) :|: z - 1 >= 0 f(z) -{ 1 }-> 1 + z :|: z >= 0 f(z) -{ 1 }-> 1 + z + (1 + g(z)) :|: z >= 0 g(z) -{ 1 }-> 1 + 0 :|: z = 0 g(z) -{ 1 }-> 1 + (1 + g(z - 1)) :|: z - 1 >= 0 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z sel(z, z') -{ 2 }-> sel(z - 1, f(X')) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0 Function symbols to be analyzed: {f}, {activate}, {sel} Previous analysis results are: g: runtime: O(n^1) [1 + z], size: O(n^1) [1 + 2*z] ---------------------------------------- (21) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> f(z - 1) :|: z - 1 >= 0 f(z) -{ 1 }-> 1 + z :|: z >= 0 f(z) -{ 2 + z }-> 1 + z + (1 + s) :|: s >= 0, s <= 2 * z + 1, z >= 0 g(z) -{ 1 }-> 1 + 0 :|: z = 0 g(z) -{ 1 + z }-> 1 + (1 + s') :|: s' >= 0, s' <= 2 * (z - 1) + 1, z - 1 >= 0 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z sel(z, z') -{ 2 }-> sel(z - 1, f(X')) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0 Function symbols to be analyzed: {f}, {activate}, {sel} Previous analysis results are: g: runtime: O(n^1) [1 + z], size: O(n^1) [1 + 2*z] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + 3*z ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> f(z - 1) :|: z - 1 >= 0 f(z) -{ 1 }-> 1 + z :|: z >= 0 f(z) -{ 2 + z }-> 1 + z + (1 + s) :|: s >= 0, s <= 2 * z + 1, z >= 0 g(z) -{ 1 }-> 1 + 0 :|: z = 0 g(z) -{ 1 + z }-> 1 + (1 + s') :|: s' >= 0, s' <= 2 * (z - 1) + 1, z - 1 >= 0 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z sel(z, z') -{ 2 }-> sel(z - 1, f(X')) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0 Function symbols to be analyzed: {f}, {activate}, {sel} Previous analysis results are: g: runtime: O(n^1) [1 + z], size: O(n^1) [1 + 2*z] f: runtime: ?, size: O(n^1) [3 + 3*z] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 1 }-> f(z - 1) :|: z - 1 >= 0 f(z) -{ 1 }-> 1 + z :|: z >= 0 f(z) -{ 2 + z }-> 1 + z + (1 + s) :|: s >= 0, s <= 2 * z + 1, z >= 0 g(z) -{ 1 }-> 1 + 0 :|: z = 0 g(z) -{ 1 + z }-> 1 + (1 + s') :|: s' >= 0, s' <= 2 * (z - 1) + 1, z - 1 >= 0 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z sel(z, z') -{ 2 }-> sel(z - 1, f(X')) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0 Function symbols to be analyzed: {activate}, {sel} Previous analysis results are: g: runtime: O(n^1) [1 + z], size: O(n^1) [1 + 2*z] f: runtime: O(n^1) [2 + z], size: O(n^1) [3 + 3*z] ---------------------------------------- (27) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 2 + z }-> s1 :|: s1 >= 0, s1 <= 3 * (z - 1) + 3, z - 1 >= 0 activate(z) -{ 1 }-> z :|: z >= 0 f(z) -{ 1 }-> 1 + z :|: z >= 0 f(z) -{ 2 + z }-> 1 + z + (1 + s) :|: s >= 0, s <= 2 * z + 1, z >= 0 g(z) -{ 1 }-> 1 + 0 :|: z = 0 g(z) -{ 1 + z }-> 1 + (1 + s') :|: s' >= 0, s' <= 2 * (z - 1) + 1, z - 1 >= 0 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z sel(z, z') -{ 4 + X' }-> sel(z - 1, s'') :|: s'' >= 0, s'' <= 3 * X' + 3, Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0 Function symbols to be analyzed: {activate}, {sel} Previous analysis results are: g: runtime: O(n^1) [1 + z], size: O(n^1) [1 + 2*z] f: runtime: O(n^1) [2 + z], size: O(n^1) [3 + 3*z] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: activate after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3*z ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 2 + z }-> s1 :|: s1 >= 0, s1 <= 3 * (z - 1) + 3, z - 1 >= 0 activate(z) -{ 1 }-> z :|: z >= 0 f(z) -{ 1 }-> 1 + z :|: z >= 0 f(z) -{ 2 + z }-> 1 + z + (1 + s) :|: s >= 0, s <= 2 * z + 1, z >= 0 g(z) -{ 1 }-> 1 + 0 :|: z = 0 g(z) -{ 1 + z }-> 1 + (1 + s') :|: s' >= 0, s' <= 2 * (z - 1) + 1, z - 1 >= 0 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z sel(z, z') -{ 4 + X' }-> sel(z - 1, s'') :|: s'' >= 0, s'' <= 3 * X' + 3, Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0 Function symbols to be analyzed: {activate}, {sel} Previous analysis results are: g: runtime: O(n^1) [1 + z], size: O(n^1) [1 + 2*z] f: runtime: O(n^1) [2 + z], size: O(n^1) [3 + 3*z] activate: runtime: ?, size: O(n^1) [3*z] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: activate after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 2 + z }-> s1 :|: s1 >= 0, s1 <= 3 * (z - 1) + 3, z - 1 >= 0 activate(z) -{ 1 }-> z :|: z >= 0 f(z) -{ 1 }-> 1 + z :|: z >= 0 f(z) -{ 2 + z }-> 1 + z + (1 + s) :|: s >= 0, s <= 2 * z + 1, z >= 0 g(z) -{ 1 }-> 1 + 0 :|: z = 0 g(z) -{ 1 + z }-> 1 + (1 + s') :|: s' >= 0, s' <= 2 * (z - 1) + 1, z - 1 >= 0 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z sel(z, z') -{ 4 + X' }-> sel(z - 1, s'') :|: s'' >= 0, s'' <= 3 * X' + 3, Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0 Function symbols to be analyzed: {sel} Previous analysis results are: g: runtime: O(n^1) [1 + z], size: O(n^1) [1 + 2*z] f: runtime: O(n^1) [2 + z], size: O(n^1) [3 + 3*z] activate: runtime: O(n^1) [2 + z], size: O(n^1) [3*z] ---------------------------------------- (33) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 2 + z }-> s1 :|: s1 >= 0, s1 <= 3 * (z - 1) + 3, z - 1 >= 0 activate(z) -{ 1 }-> z :|: z >= 0 f(z) -{ 1 }-> 1 + z :|: z >= 0 f(z) -{ 2 + z }-> 1 + z + (1 + s) :|: s >= 0, s <= 2 * z + 1, z >= 0 g(z) -{ 1 }-> 1 + 0 :|: z = 0 g(z) -{ 1 + z }-> 1 + (1 + s') :|: s' >= 0, s' <= 2 * (z - 1) + 1, z - 1 >= 0 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z sel(z, z') -{ 4 + X' }-> sel(z - 1, s'') :|: s'' >= 0, s'' <= 3 * X' + 3, Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0 Function symbols to be analyzed: {sel} Previous analysis results are: g: runtime: O(n^1) [1 + z], size: O(n^1) [1 + 2*z] f: runtime: O(n^1) [2 + z], size: O(n^1) [3 + 3*z] activate: runtime: O(n^1) [2 + z], size: O(n^1) [3*z] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: sel after applying outer abstraction to obtain an ITS, resulting in: EXP with polynomial bound: ? ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 2 + z }-> s1 :|: s1 >= 0, s1 <= 3 * (z - 1) + 3, z - 1 >= 0 activate(z) -{ 1 }-> z :|: z >= 0 f(z) -{ 1 }-> 1 + z :|: z >= 0 f(z) -{ 2 + z }-> 1 + z + (1 + s) :|: s >= 0, s <= 2 * z + 1, z >= 0 g(z) -{ 1 }-> 1 + 0 :|: z = 0 g(z) -{ 1 + z }-> 1 + (1 + s') :|: s' >= 0, s' <= 2 * (z - 1) + 1, z - 1 >= 0 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z sel(z, z') -{ 4 + X' }-> sel(z - 1, s'') :|: s'' >= 0, s'' <= 3 * X' + 3, Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0 Function symbols to be analyzed: {sel} Previous analysis results are: g: runtime: O(n^1) [1 + z], size: O(n^1) [1 + 2*z] f: runtime: O(n^1) [2 + z], size: O(n^1) [3 + 3*z] activate: runtime: O(n^1) [2 + z], size: O(n^1) [3*z] sel: runtime: ?, size: EXP ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: sel after applying outer abstraction to obtain an ITS, resulting in: EXP with polynomial bound: ? ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 2 + z }-> s1 :|: s1 >= 0, s1 <= 3 * (z - 1) + 3, z - 1 >= 0 activate(z) -{ 1 }-> z :|: z >= 0 f(z) -{ 1 }-> 1 + z :|: z >= 0 f(z) -{ 2 + z }-> 1 + z + (1 + s) :|: s >= 0, s <= 2 * z + 1, z >= 0 g(z) -{ 1 }-> 1 + 0 :|: z = 0 g(z) -{ 1 + z }-> 1 + (1 + s') :|: s' >= 0, s' <= 2 * (z - 1) + 1, z - 1 >= 0 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z sel(z, z') -{ 4 + X' }-> sel(z - 1, s'') :|: s'' >= 0, s'' <= 3 * X' + 3, Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0 Function symbols to be analyzed: Previous analysis results are: g: runtime: O(n^1) [1 + z], size: O(n^1) [1 + 2*z] f: runtime: O(n^1) [2 + z], size: O(n^1) [3 + 3*z] activate: runtime: O(n^1) [2 + z], size: O(n^1) [3*z] sel: runtime: EXP, size: EXP ---------------------------------------- (39) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (40) BOUNDS(1, EXP) ---------------------------------------- (41) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (42) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, EXP). The TRS R consists of the following rules: f(X) -> cons(X, n__f(g(X))) g(0) -> s(0) g(s(X)) -> s(s(g(X))) sel(0, cons(X, Y)) -> X sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) f(X) -> n__f(X) activate(n__f(X)) -> f(X) activate(X) -> X S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (43) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence g(s(X)) ->^+ s(s(g(X))) gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0]. The pumping substitution is [X / s(X)]. The result substitution is [ ]. ---------------------------------------- (44) Complex Obligation (BEST) ---------------------------------------- (45) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, EXP). The TRS R consists of the following rules: f(X) -> cons(X, n__f(g(X))) g(0) -> s(0) g(s(X)) -> s(s(g(X))) sel(0, cons(X, Y)) -> X sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) f(X) -> n__f(X) activate(n__f(X)) -> f(X) activate(X) -> X S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (46) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (47) BOUNDS(n^1, INF) ---------------------------------------- (48) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, EXP). The TRS R consists of the following rules: f(X) -> cons(X, n__f(g(X))) g(0) -> s(0) g(s(X)) -> s(s(g(X))) sel(0, cons(X, Y)) -> X sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) f(X) -> n__f(X) activate(n__f(X)) -> f(X) activate(X) -> X S is empty. Rewrite Strategy: INNERMOST