/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 69 ms] (8) CdtProblem (9) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (10) BOUNDS(1, 1) (11) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (12) TRS for Loop Detection (13) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) from(X) -> cons(X, n__from(s(X))) first(X1, X2) -> n__first(X1, X2) from(X) -> n__from(X) activate(n__first(X1, X2)) -> first(X1, X2) activate(n__from(X)) -> from(X) activate(X) -> X S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: first(0, z0) -> nil first(s(z0), cons(z1, z2)) -> cons(z1, n__first(z0, activate(z2))) first(z0, z1) -> n__first(z0, z1) from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) activate(n__first(z0, z1)) -> first(z0, z1) activate(n__from(z0)) -> from(z0) activate(z0) -> z0 Tuples: FIRST(0, z0) -> c FIRST(s(z0), cons(z1, z2)) -> c1(ACTIVATE(z2)) FIRST(z0, z1) -> c2 FROM(z0) -> c3 FROM(z0) -> c4 ACTIVATE(n__first(z0, z1)) -> c5(FIRST(z0, z1)) ACTIVATE(n__from(z0)) -> c6(FROM(z0)) ACTIVATE(z0) -> c7 S tuples: FIRST(0, z0) -> c FIRST(s(z0), cons(z1, z2)) -> c1(ACTIVATE(z2)) FIRST(z0, z1) -> c2 FROM(z0) -> c3 FROM(z0) -> c4 ACTIVATE(n__first(z0, z1)) -> c5(FIRST(z0, z1)) ACTIVATE(n__from(z0)) -> c6(FROM(z0)) ACTIVATE(z0) -> c7 K tuples:none Defined Rule Symbols: first_2, from_1, activate_1 Defined Pair Symbols: FIRST_2, FROM_1, ACTIVATE_1 Compound Symbols: c, c1_1, c2, c3, c4, c5_1, c6_1, c7 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 6 trailing nodes: FIRST(0, z0) -> c FIRST(z0, z1) -> c2 ACTIVATE(z0) -> c7 FROM(z0) -> c4 FROM(z0) -> c3 ACTIVATE(n__from(z0)) -> c6(FROM(z0)) ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: first(0, z0) -> nil first(s(z0), cons(z1, z2)) -> cons(z1, n__first(z0, activate(z2))) first(z0, z1) -> n__first(z0, z1) from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) activate(n__first(z0, z1)) -> first(z0, z1) activate(n__from(z0)) -> from(z0) activate(z0) -> z0 Tuples: FIRST(s(z0), cons(z1, z2)) -> c1(ACTIVATE(z2)) ACTIVATE(n__first(z0, z1)) -> c5(FIRST(z0, z1)) S tuples: FIRST(s(z0), cons(z1, z2)) -> c1(ACTIVATE(z2)) ACTIVATE(n__first(z0, z1)) -> c5(FIRST(z0, z1)) K tuples:none Defined Rule Symbols: first_2, from_1, activate_1 Defined Pair Symbols: FIRST_2, ACTIVATE_1 Compound Symbols: c1_1, c5_1 ---------------------------------------- (5) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: first(0, z0) -> nil first(s(z0), cons(z1, z2)) -> cons(z1, n__first(z0, activate(z2))) first(z0, z1) -> n__first(z0, z1) from(z0) -> cons(z0, n__from(s(z0))) from(z0) -> n__from(z0) activate(n__first(z0, z1)) -> first(z0, z1) activate(n__from(z0)) -> from(z0) activate(z0) -> z0 ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: FIRST(s(z0), cons(z1, z2)) -> c1(ACTIVATE(z2)) ACTIVATE(n__first(z0, z1)) -> c5(FIRST(z0, z1)) S tuples: FIRST(s(z0), cons(z1, z2)) -> c1(ACTIVATE(z2)) ACTIVATE(n__first(z0, z1)) -> c5(FIRST(z0, z1)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: FIRST_2, ACTIVATE_1 Compound Symbols: c1_1, c5_1 ---------------------------------------- (7) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. FIRST(s(z0), cons(z1, z2)) -> c1(ACTIVATE(z2)) ACTIVATE(n__first(z0, z1)) -> c5(FIRST(z0, z1)) We considered the (Usable) Rules:none And the Tuples: FIRST(s(z0), cons(z1, z2)) -> c1(ACTIVATE(z2)) ACTIVATE(n__first(z0, z1)) -> c5(FIRST(z0, z1)) The order we found is given by the following interpretation: Polynomial interpretation : POL(ACTIVATE(x_1)) = [1] + x_1 POL(FIRST(x_1, x_2)) = [1] + x_1 + x_2 POL(c1(x_1)) = x_1 POL(c5(x_1)) = x_1 POL(cons(x_1, x_2)) = [1] + x_2 POL(n__first(x_1, x_2)) = [1] + x_1 + x_2 POL(s(x_1)) = [1] ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: FIRST(s(z0), cons(z1, z2)) -> c1(ACTIVATE(z2)) ACTIVATE(n__first(z0, z1)) -> c5(FIRST(z0, z1)) S tuples:none K tuples: FIRST(s(z0), cons(z1, z2)) -> c1(ACTIVATE(z2)) ACTIVATE(n__first(z0, z1)) -> c5(FIRST(z0, z1)) Defined Rule Symbols:none Defined Pair Symbols: FIRST_2, ACTIVATE_1 Compound Symbols: c1_1, c5_1 ---------------------------------------- (9) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (10) BOUNDS(1, 1) ---------------------------------------- (11) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) from(X) -> cons(X, n__from(s(X))) first(X1, X2) -> n__first(X1, X2) from(X) -> n__from(X) activate(n__first(X1, X2)) -> first(X1, X2) activate(n__from(X)) -> from(X) activate(X) -> X S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (13) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence activate(n__first(s(X1_0), cons(Y2_0, Z3_0))) ->^+ cons(Y2_0, n__first(X1_0, activate(Z3_0))) gives rise to a decreasing loop by considering the right hand sides subterm at position [1,1]. The pumping substitution is [Z3_0 / n__first(s(X1_0), cons(Y2_0, Z3_0))]. The result substitution is [ ]. ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) from(X) -> cons(X, n__from(s(X))) first(X1, X2) -> n__first(X1, X2) from(X) -> n__from(X) activate(n__first(X1, X2)) -> first(X1, X2) activate(n__from(X)) -> from(X) activate(X) -> X S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) from(X) -> cons(X, n__from(s(X))) first(X1, X2) -> n__first(X1, X2) from(X) -> n__from(X) activate(n__first(X1, X2)) -> first(X1, X2) activate(n__from(X)) -> from(X) activate(X) -> X S is empty. Rewrite Strategy: INNERMOST