/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 281 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: fib(N) -> sel(N, fib1(s(0), s(0))) fib1(X, Y) -> cons(X, n__fib1(Y, n__add(X, Y))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) sel(0, cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) fib1(X1, X2) -> n__fib1(X1, X2) add(X1, X2) -> n__add(X1, X2) activate(n__fib1(X1, X2)) -> fib1(activate(X1), activate(X2)) activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) activate(X) -> X S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: fib(N) -> sel(N, fib1(s(0'), s(0'))) fib1(X, Y) -> cons(X, n__fib1(Y, n__add(X, Y))) add(0', X) -> X add(s(X), Y) -> s(add(X, Y)) sel(0', cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) fib1(X1, X2) -> n__fib1(X1, X2) add(X1, X2) -> n__add(X1, X2) activate(n__fib1(X1, X2)) -> fib1(activate(X1), activate(X2)) activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) activate(X) -> X S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Innermost TRS: Rules: fib(N) -> sel(N, fib1(s(0'), s(0'))) fib1(X, Y) -> cons(X, n__fib1(Y, n__add(X, Y))) add(0', X) -> X add(s(X), Y) -> s(add(X, Y)) sel(0', cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) fib1(X1, X2) -> n__fib1(X1, X2) add(X1, X2) -> n__add(X1, X2) activate(n__fib1(X1, X2)) -> fib1(activate(X1), activate(X2)) activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) activate(X) -> X Types: fib :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons sel :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons fib1 :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons s :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons 0' :: 0':s:n__add:n__fib1:cons cons :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons n__fib1 :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons n__add :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons add :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons activate :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons hole_0':s:n__add:n__fib1:cons1_0 :: 0':s:n__add:n__fib1:cons gen_0':s:n__add:n__fib1:cons2_0 :: Nat -> 0':s:n__add:n__fib1:cons ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: sel, add, activate They will be analysed ascendingly in the following order: activate < sel add < activate ---------------------------------------- (6) Obligation: Innermost TRS: Rules: fib(N) -> sel(N, fib1(s(0'), s(0'))) fib1(X, Y) -> cons(X, n__fib1(Y, n__add(X, Y))) add(0', X) -> X add(s(X), Y) -> s(add(X, Y)) sel(0', cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) fib1(X1, X2) -> n__fib1(X1, X2) add(X1, X2) -> n__add(X1, X2) activate(n__fib1(X1, X2)) -> fib1(activate(X1), activate(X2)) activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) activate(X) -> X Types: fib :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons sel :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons fib1 :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons s :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons 0' :: 0':s:n__add:n__fib1:cons cons :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons n__fib1 :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons n__add :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons add :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons activate :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons hole_0':s:n__add:n__fib1:cons1_0 :: 0':s:n__add:n__fib1:cons gen_0':s:n__add:n__fib1:cons2_0 :: Nat -> 0':s:n__add:n__fib1:cons Generator Equations: gen_0':s:n__add:n__fib1:cons2_0(0) <=> 0' gen_0':s:n__add:n__fib1:cons2_0(+(x, 1)) <=> s(gen_0':s:n__add:n__fib1:cons2_0(x)) The following defined symbols remain to be analysed: add, sel, activate They will be analysed ascendingly in the following order: activate < sel add < activate ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: add(gen_0':s:n__add:n__fib1:cons2_0(n4_0), gen_0':s:n__add:n__fib1:cons2_0(b)) -> gen_0':s:n__add:n__fib1:cons2_0(+(n4_0, b)), rt in Omega(1 + n4_0) Induction Base: add(gen_0':s:n__add:n__fib1:cons2_0(0), gen_0':s:n__add:n__fib1:cons2_0(b)) ->_R^Omega(1) gen_0':s:n__add:n__fib1:cons2_0(b) Induction Step: add(gen_0':s:n__add:n__fib1:cons2_0(+(n4_0, 1)), gen_0':s:n__add:n__fib1:cons2_0(b)) ->_R^Omega(1) s(add(gen_0':s:n__add:n__fib1:cons2_0(n4_0), gen_0':s:n__add:n__fib1:cons2_0(b))) ->_IH s(gen_0':s:n__add:n__fib1:cons2_0(+(b, c5_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: fib(N) -> sel(N, fib1(s(0'), s(0'))) fib1(X, Y) -> cons(X, n__fib1(Y, n__add(X, Y))) add(0', X) -> X add(s(X), Y) -> s(add(X, Y)) sel(0', cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) fib1(X1, X2) -> n__fib1(X1, X2) add(X1, X2) -> n__add(X1, X2) activate(n__fib1(X1, X2)) -> fib1(activate(X1), activate(X2)) activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) activate(X) -> X Types: fib :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons sel :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons fib1 :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons s :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons 0' :: 0':s:n__add:n__fib1:cons cons :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons n__fib1 :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons n__add :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons add :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons activate :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons hole_0':s:n__add:n__fib1:cons1_0 :: 0':s:n__add:n__fib1:cons gen_0':s:n__add:n__fib1:cons2_0 :: Nat -> 0':s:n__add:n__fib1:cons Generator Equations: gen_0':s:n__add:n__fib1:cons2_0(0) <=> 0' gen_0':s:n__add:n__fib1:cons2_0(+(x, 1)) <=> s(gen_0':s:n__add:n__fib1:cons2_0(x)) The following defined symbols remain to be analysed: add, sel, activate They will be analysed ascendingly in the following order: activate < sel add < activate ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Innermost TRS: Rules: fib(N) -> sel(N, fib1(s(0'), s(0'))) fib1(X, Y) -> cons(X, n__fib1(Y, n__add(X, Y))) add(0', X) -> X add(s(X), Y) -> s(add(X, Y)) sel(0', cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, activate(XS)) fib1(X1, X2) -> n__fib1(X1, X2) add(X1, X2) -> n__add(X1, X2) activate(n__fib1(X1, X2)) -> fib1(activate(X1), activate(X2)) activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) activate(X) -> X Types: fib :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons sel :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons fib1 :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons s :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons 0' :: 0':s:n__add:n__fib1:cons cons :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons n__fib1 :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons n__add :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons add :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons activate :: 0':s:n__add:n__fib1:cons -> 0':s:n__add:n__fib1:cons hole_0':s:n__add:n__fib1:cons1_0 :: 0':s:n__add:n__fib1:cons gen_0':s:n__add:n__fib1:cons2_0 :: Nat -> 0':s:n__add:n__fib1:cons Lemmas: add(gen_0':s:n__add:n__fib1:cons2_0(n4_0), gen_0':s:n__add:n__fib1:cons2_0(b)) -> gen_0':s:n__add:n__fib1:cons2_0(+(n4_0, b)), rt in Omega(1 + n4_0) Generator Equations: gen_0':s:n__add:n__fib1:cons2_0(0) <=> 0' gen_0':s:n__add:n__fib1:cons2_0(+(x, 1)) <=> s(gen_0':s:n__add:n__fib1:cons2_0(x)) The following defined symbols remain to be analysed: activate, sel They will be analysed ascendingly in the following order: activate < sel