/export/starexec/sandbox/solver/bin/starexec_run_tct_rci /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?,O(1)) * Step 1: Sum. WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: f(0()) -> cons(0()) f(s(0())) -> f(p(s(0()))) p(s(0())) -> 0() - Signature: {f/1,p/1} / {0/0,cons/1,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {f,p} and constructors {0,cons,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: Sum. MAYBE + Considered Problem: - Strict TRS: f(0()) -> cons(0()) f(s(0())) -> f(p(s(0()))) p(s(0())) -> 0() - Signature: {f/1,p/1} / {0/0,cons/1,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {f,p} and constructors {0,cons,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:2: Ara. MAYBE + Considered Problem: - Strict TRS: f(0()) -> cons(0()) f(s(0())) -> f(p(s(0()))) p(s(0())) -> 0() - Signature: {f/1,p/1} / {0/0,cons/1,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {f,p} and constructors {0,cons,s} + Applied Processor: Ara {minDegree = 1, maxDegree = 3, araTimeout = 15, araRuleShifting = Just 1, isBestCase = True, mkCompletelyDefined = False, verboseOutput = False} + Details: Signatures used: ---------------- F (TrsFun "0") :: [] -(0)-> "A"(0, 0, 0) F (TrsFun "0") :: [] -(0)-> "A"(2, 2, 1) F (TrsFun "cons") :: ["A"(0, 0, 0)] -(0)-> "A"(0, 0, 0) F (TrsFun "f") :: ["A"(0, 0, 0)] -(1)-> "A"(0, 0, 0) F (TrsFun "main") :: ["A"(0, 0, 1)] -(1)-> "A"(0, 0, 0) F (TrsFun "p") :: ["A"(1, 1, 1)] -(0)-> "A"(0, 0, 0) F (TrsFun "s") :: ["A"(0, 0, 0)] -(0)-> "A"(0, 0, 0) F (TrsFun "s") :: ["A"(2, 2, 1)] -(1)-> "A"(1, 1, 1) Cost-free Signatures used: -------------------------- Base Constructor Signatures used: --------------------------------- Following Still Strict Rules were Typed as: ------------------------------------------- 1. Strict: f(0()) -> cons(0()) f(s(0())) -> f(p(s(0()))) p(s(0())) -> 0() main(x1) -> p(x1) 2. Weak: ** Step 1.b:1: DependencyPairs. WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: f(0()) -> cons(0()) f(s(0())) -> f(p(s(0()))) p(s(0())) -> 0() - Signature: {f/1,p/1} / {0/0,cons/1,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {f,p} and constructors {0,cons,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs f#(0()) -> c_1() f#(s(0())) -> c_2(f#(p(s(0()))),p#(s(0()))) p#(s(0())) -> c_3() Weak DPs and mark the set of starting terms. ** Step 1.b:2: UsableRules. WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(0()) -> c_1() f#(s(0())) -> c_2(f#(p(s(0()))),p#(s(0()))) p#(s(0())) -> c_3() - Weak TRS: f(0()) -> cons(0()) f(s(0())) -> f(p(s(0()))) p(s(0())) -> 0() - Signature: {f/1,p/1,f#/1,p#/1} / {0/0,cons/1,s/1,c_1/0,c_2/2,c_3/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,p#} and constructors {0,cons,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: p(s(0())) -> 0() f#(0()) -> c_1() f#(s(0())) -> c_2(f#(p(s(0()))),p#(s(0()))) p#(s(0())) -> c_3() ** Step 1.b:3: PredecessorEstimation. WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(0()) -> c_1() f#(s(0())) -> c_2(f#(p(s(0()))),p#(s(0()))) p#(s(0())) -> c_3() - Weak TRS: p(s(0())) -> 0() - Signature: {f/1,p/1,f#/1,p#/1} / {0/0,cons/1,s/1,c_1/0,c_2/2,c_3/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,p#} and constructors {0,cons,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,3} by application of Pre({1,3}) = {2}. Here rules are labelled as follows: 1: f#(0()) -> c_1() 2: f#(s(0())) -> c_2(f#(p(s(0()))),p#(s(0()))) 3: p#(s(0())) -> c_3() ** Step 1.b:4: RemoveWeakSuffixes. WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(s(0())) -> c_2(f#(p(s(0()))),p#(s(0()))) - Weak DPs: f#(0()) -> c_1() p#(s(0())) -> c_3() - Weak TRS: p(s(0())) -> 0() - Signature: {f/1,p/1,f#/1,p#/1} / {0/0,cons/1,s/1,c_1/0,c_2/2,c_3/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,p#} and constructors {0,cons,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:f#(s(0())) -> c_2(f#(p(s(0()))),p#(s(0()))) -->_2 p#(s(0())) -> c_3():3 -->_1 f#(0()) -> c_1():2 -->_1 f#(s(0())) -> c_2(f#(p(s(0()))),p#(s(0()))):1 2:W:f#(0()) -> c_1() 3:W:p#(s(0())) -> c_3() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: f#(0()) -> c_1() 3: p#(s(0())) -> c_3() ** Step 1.b:5: SimplifyRHS. WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(s(0())) -> c_2(f#(p(s(0()))),p#(s(0()))) - Weak TRS: p(s(0())) -> 0() - Signature: {f/1,p/1,f#/1,p#/1} / {0/0,cons/1,s/1,c_1/0,c_2/2,c_3/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,p#} and constructors {0,cons,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:f#(s(0())) -> c_2(f#(p(s(0()))),p#(s(0()))) -->_1 f#(s(0())) -> c_2(f#(p(s(0()))),p#(s(0()))):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: f#(s(0())) -> c_2(f#(p(s(0())))) ** Step 1.b:6: WeightGap. WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(s(0())) -> c_2(f#(p(s(0())))) - Weak TRS: p(s(0())) -> 0() - Signature: {f/1,p/1,f#/1,p#/1} / {0/0,cons/1,s/1,c_1/0,c_2/1,c_3/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,p#} and constructors {0,cons,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(f#) = {1}, uargs(c_2) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(cons) = [0] p(f) = [0] p(p) = [0] p(s) = [3] p(f#) = [1] x1 + [0] p(p#) = [0] p(c_1) = [0] p(c_2) = [1] x1 + [0] p(c_3) = [0] Following rules are strictly oriented: f#(s(0())) = [3] > [0] = c_2(f#(p(s(0())))) Following rules are (at-least) weakly oriented: p(s(0())) = [0] >= [0] = 0() Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:7: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: f#(s(0())) -> c_2(f#(p(s(0())))) - Weak TRS: p(s(0())) -> 0() - Signature: {f/1,p/1,f#/1,p#/1} / {0/0,cons/1,s/1,c_1/0,c_2/1,c_3/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#,p#} and constructors {0,cons,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(1))