/export/starexec/sandbox/solver/bin/starexec_run_tct_rci /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1),O(n^2)) * Step 1: Sum. WORST_CASE(Omega(n^1),O(n^2)) + Considered Problem: - Strict TRS: activate(X) -> X and(tt(),X) -> activate(X) plus(N,0()) -> N plus(N,s(M)) -> s(plus(N,M)) x(N,0()) -> 0() x(N,s(M)) -> plus(x(N,M),N) - Signature: {activate/1,and/2,plus/2,x/2} / {0/0,s/1,tt/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate,and,plus,x} and constructors {0,s,tt} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: Sum. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: activate(X) -> X and(tt(),X) -> activate(X) plus(N,0()) -> N plus(N,s(M)) -> s(plus(N,M)) x(N,0()) -> 0() x(N,s(M)) -> plus(x(N,M),N) - Signature: {activate/1,and/2,plus/2,x/2} / {0/0,s/1,tt/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate,and,plus,x} and constructors {0,s,tt} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () *** Step 1.a:1.a:1: Ara. MAYBE + Considered Problem: - Strict TRS: activate(X) -> X and(tt(),X) -> activate(X) plus(N,0()) -> N plus(N,s(M)) -> s(plus(N,M)) x(N,0()) -> 0() x(N,s(M)) -> plus(x(N,M),N) - Signature: {activate/1,and/2,plus/2,x/2} / {0/0,s/1,tt/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate,and,plus,x} and constructors {0,s,tt} + Applied Processor: Ara {minDegree = 1, maxDegree = 3, araTimeout = 15, araRuleShifting = Just 1, isBestCase = True, mkCompletelyDefined = False, verboseOutput = False} + Details: Signatures used: ---------------- F (TrsFun "0") :: [] -(0)-> "A"(0) F (TrsFun "0") :: [] -(0)-> "A"(1) F (TrsFun "activate") :: ["A"(0)] -(1)-> "A"(0) F (TrsFun "and") :: ["A"(0) x "A"(0)] -(1)-> "A"(0) F (TrsFun "main") :: ["A"(0) x "A"(1)] -(1)-> "A"(0) F (TrsFun "plus") :: ["A"(0) x "A"(0)] -(1)-> "A"(0) F (TrsFun "s") :: ["A"(0)] -(0)-> "A"(0) F (TrsFun "s") :: ["A"(1)] -(1)-> "A"(1) F (TrsFun "tt") :: [] -(0)-> "A"(0) F (TrsFun "x") :: ["A"(0) x "A"(1)] -(1)-> "A"(0) Cost-free Signatures used: -------------------------- Base Constructor Signatures used: --------------------------------- Following Still Strict Rules were Typed as: ------------------------------------------- 1. Strict: activate(X) -> X and(tt(),X) -> activate(X) plus(N,0()) -> N plus(N,s(M)) -> s(plus(N,M)) x(N,0()) -> 0() x(N,s(M)) -> plus(x(N,M),N) main(x1,x2) -> x(x1,x2) 2. Weak: *** Step 1.a:1.b:1: DecreasingLoops. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: activate(X) -> X and(tt(),X) -> activate(X) plus(N,0()) -> N plus(N,s(M)) -> s(plus(N,M)) x(N,0()) -> 0() x(N,s(M)) -> plus(x(N,M),N) - Signature: {activate/1,and/2,plus/2,x/2} / {0/0,s/1,tt/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate,and,plus,x} and constructors {0,s,tt} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: plus(x,y){y -> s(y)} = plus(x,s(y)) ->^+ s(plus(x,y)) = C[plus(x,y) = plus(x,y){}] ** Step 1.b:1: DependencyPairs. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: activate(X) -> X and(tt(),X) -> activate(X) plus(N,0()) -> N plus(N,s(M)) -> s(plus(N,M)) x(N,0()) -> 0() x(N,s(M)) -> plus(x(N,M),N) - Signature: {activate/1,and/2,plus/2,x/2} / {0/0,s/1,tt/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate,and,plus,x} and constructors {0,s,tt} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs activate#(X) -> c_1() and#(tt(),X) -> c_2(activate#(X)) plus#(N,0()) -> c_3() plus#(N,s(M)) -> c_4(plus#(N,M)) x#(N,0()) -> c_5() x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)) Weak DPs and mark the set of starting terms. ** Step 1.b:2: PredecessorEstimation. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: activate#(X) -> c_1() and#(tt(),X) -> c_2(activate#(X)) plus#(N,0()) -> c_3() plus#(N,s(M)) -> c_4(plus#(N,M)) x#(N,0()) -> c_5() x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)) - Weak TRS: activate(X) -> X and(tt(),X) -> activate(X) plus(N,0()) -> N plus(N,s(M)) -> s(plus(N,M)) x(N,0()) -> 0() x(N,s(M)) -> plus(x(N,M),N) - Signature: {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0 ,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,3,5} by application of Pre({1,3,5}) = {2,4,6}. Here rules are labelled as follows: 1: activate#(X) -> c_1() 2: and#(tt(),X) -> c_2(activate#(X)) 3: plus#(N,0()) -> c_3() 4: plus#(N,s(M)) -> c_4(plus#(N,M)) 5: x#(N,0()) -> c_5() 6: x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)) ** Step 1.b:3: PredecessorEstimation. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: and#(tt(),X) -> c_2(activate#(X)) plus#(N,s(M)) -> c_4(plus#(N,M)) x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)) - Weak DPs: activate#(X) -> c_1() plus#(N,0()) -> c_3() x#(N,0()) -> c_5() - Weak TRS: activate(X) -> X and(tt(),X) -> activate(X) plus(N,0()) -> N plus(N,s(M)) -> s(plus(N,M)) x(N,0()) -> 0() x(N,s(M)) -> plus(x(N,M),N) - Signature: {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0 ,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1} by application of Pre({1}) = {}. Here rules are labelled as follows: 1: and#(tt(),X) -> c_2(activate#(X)) 2: plus#(N,s(M)) -> c_4(plus#(N,M)) 3: x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)) 4: activate#(X) -> c_1() 5: plus#(N,0()) -> c_3() 6: x#(N,0()) -> c_5() ** Step 1.b:4: RemoveWeakSuffixes. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: plus#(N,s(M)) -> c_4(plus#(N,M)) x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)) - Weak DPs: activate#(X) -> c_1() and#(tt(),X) -> c_2(activate#(X)) plus#(N,0()) -> c_3() x#(N,0()) -> c_5() - Weak TRS: activate(X) -> X and(tt(),X) -> activate(X) plus(N,0()) -> N plus(N,s(M)) -> s(plus(N,M)) x(N,0()) -> 0() x(N,s(M)) -> plus(x(N,M),N) - Signature: {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0 ,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:plus#(N,s(M)) -> c_4(plus#(N,M)) -->_1 plus#(N,0()) -> c_3():5 -->_1 plus#(N,s(M)) -> c_4(plus#(N,M)):1 2:S:x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)) -->_2 x#(N,0()) -> c_5():6 -->_1 plus#(N,0()) -> c_3():5 -->_2 x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)):2 -->_1 plus#(N,s(M)) -> c_4(plus#(N,M)):1 3:W:activate#(X) -> c_1() 4:W:and#(tt(),X) -> c_2(activate#(X)) -->_1 activate#(X) -> c_1():3 5:W:plus#(N,0()) -> c_3() 6:W:x#(N,0()) -> c_5() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: and#(tt(),X) -> c_2(activate#(X)) 3: activate#(X) -> c_1() 6: x#(N,0()) -> c_5() 5: plus#(N,0()) -> c_3() ** Step 1.b:5: UsableRules. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: plus#(N,s(M)) -> c_4(plus#(N,M)) x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)) - Weak TRS: activate(X) -> X and(tt(),X) -> activate(X) plus(N,0()) -> N plus(N,s(M)) -> s(plus(N,M)) x(N,0()) -> 0() x(N,s(M)) -> plus(x(N,M),N) - Signature: {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0 ,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: plus(N,0()) -> N plus(N,s(M)) -> s(plus(N,M)) x(N,0()) -> 0() x(N,s(M)) -> plus(x(N,M),N) plus#(N,s(M)) -> c_4(plus#(N,M)) x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)) ** Step 1.b:6: DecomposeDG. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: plus#(N,s(M)) -> c_4(plus#(N,M)) x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)) - Weak TRS: plus(N,0()) -> N plus(N,s(M)) -> s(plus(N,M)) x(N,0()) -> 0() x(N,s(M)) -> plus(x(N,M),N) - Signature: {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0 ,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Nothing, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)) and a lower component plus#(N,s(M)) -> c_4(plus#(N,M)) Further, following extension rules are added to the lower component. x#(N,s(M)) -> plus#(x(N,M),N) x#(N,s(M)) -> x#(N,M) *** Step 1.b:6.a:1: SimplifyRHS. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)) - Weak TRS: plus(N,0()) -> N plus(N,s(M)) -> s(plus(N,M)) x(N,0()) -> 0() x(N,s(M)) -> plus(x(N,M),N) - Signature: {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0 ,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)) -->_2 x#(N,s(M)) -> c_6(plus#(x(N,M),N),x#(N,M)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: x#(N,s(M)) -> c_6(x#(N,M)) *** Step 1.b:6.a:2: UsableRules. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: x#(N,s(M)) -> c_6(x#(N,M)) - Weak TRS: plus(N,0()) -> N plus(N,s(M)) -> s(plus(N,M)) x(N,0()) -> 0() x(N,s(M)) -> plus(x(N,M),N) - Signature: {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0 ,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: x#(N,s(M)) -> c_6(x#(N,M)) *** Step 1.b:6.a:3: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: x#(N,s(M)) -> c_6(x#(N,M)) - Signature: {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0 ,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_6) = {1} Following symbols are considered usable: {activate#,and#,plus#,x#} TcT has computed the following interpretation: p(0) = [0] p(activate) = [2] p(and) = [1] x2 + [1] p(plus) = [1] p(s) = [1] x1 + [2] p(tt) = [0] p(x) = [2] x1 + [1] p(activate#) = [2] p(and#) = [2] x1 + [1] p(plus#) = [1] x1 + [1] x2 + [0] p(x#) = [10] x1 + [1] x2 + [3] p(c_1) = [0] p(c_2) = [2] p(c_3) = [1] p(c_4) = [1] x1 + [4] p(c_5) = [1] p(c_6) = [1] x1 + [0] Following rules are strictly oriented: x#(N,s(M)) = [1] M + [10] N + [5] > [1] M + [10] N + [3] = c_6(x#(N,M)) Following rules are (at-least) weakly oriented: *** Step 1.b:6.a:4: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: x#(N,s(M)) -> c_6(x#(N,M)) - Signature: {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0 ,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). *** Step 1.b:6.b:1: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: plus#(N,s(M)) -> c_4(plus#(N,M)) - Weak DPs: x#(N,s(M)) -> plus#(x(N,M),N) x#(N,s(M)) -> x#(N,M) - Weak TRS: plus(N,0()) -> N plus(N,s(M)) -> s(plus(N,M)) x(N,0()) -> 0() x(N,s(M)) -> plus(x(N,M),N) - Signature: {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0 ,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_4) = {1} Following symbols are considered usable: {activate#,and#,plus#,x#} TcT has computed the following interpretation: p(0) = [1] p(activate) = [0] p(and) = [1] x2 + [0] p(plus) = [3] x1 + [7] x2 + [0] p(s) = [1] x1 + [2] p(tt) = [0] p(x) = [6] x1 + [0] p(activate#) = [0] p(and#) = [2] x1 + [0] p(plus#) = [1] x2 + [4] p(x#) = [8] x1 + [4] p(c_1) = [0] p(c_2) = [0] p(c_3) = [0] p(c_4) = [1] x1 + [0] p(c_5) = [0] p(c_6) = [8] x2 + [0] Following rules are strictly oriented: plus#(N,s(M)) = [1] M + [6] > [1] M + [4] = c_4(plus#(N,M)) Following rules are (at-least) weakly oriented: x#(N,s(M)) = [8] N + [4] >= [1] N + [4] = plus#(x(N,M),N) x#(N,s(M)) = [8] N + [4] >= [8] N + [4] = x#(N,M) *** Step 1.b:6.b:2: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: plus#(N,s(M)) -> c_4(plus#(N,M)) x#(N,s(M)) -> plus#(x(N,M),N) x#(N,s(M)) -> x#(N,M) - Weak TRS: plus(N,0()) -> N plus(N,s(M)) -> s(plus(N,M)) x(N,0()) -> 0() x(N,s(M)) -> plus(x(N,M),N) - Signature: {activate/1,and/2,plus/2,x/2,activate#/1,and#/2,plus#/2,x#/2} / {0/0,s/1,tt/0,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0 ,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,plus#,x#} and constructors {0,s,tt} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^2))